Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 115: 111144, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32600731

ABSTRACT

The peripheral nervous system comprises glia and neurons that receive the necessary cues for their adhesion and proliferation from their extracellular milieu. In this study, a spatial platform of pseudoperiodic morphologies including patterns of nano- and micro- structures on Si were developed via direct ultrafast-laser structuring and were used as substrates for the patterning of co-cultured neuronal cells. The response of murine Schwann (SW10) and Neuro2a (N2a) cells were investigated both in monocultures and in a glia and neuronal co-culture system. Our results denoted that different types of neural tissue cells respond differently to the underlying topography, but furthermore, the presence of the glial cells alters the adhesion behavior of the neuronal cells in their co-culture. Therefore, we envisage that direct laser structuring that enables spatial patterning of the cells of the nervous system in a controllable manner according to the research needs, could in the future be a useful tool for understanding neural network interfaces and their electrical activity, synaptic processes and myelin formation.


Subject(s)
Coculture Techniques/methods , Neurons/cytology , Schwann Cells/cytology , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Coculture Techniques/instrumentation , Lasers , Mice , Surface Properties
2.
Biochim Biophys Acta ; 1830(9): 4294-304, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23291427

ABSTRACT

BACKGROUND: An exciting direction in nanomedicine would be to analyze how living cells respond to conducting polymers. Their application for tissue regeneration may advance the performance of drug eluting stents by addressing the delayed stent re-endothelialization and late stent thrombosis. METHODS: The suitability of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films for stents to promote cell adhesion and proliferation is tested in correlation with doping and physicochemical properties. PEDOT doped either with poly (styrenesulfonate) (PSS) or tosylate anion (TOS) was used for films' fabrication by spin coating and vapor phase polymerization respectively. PEGylation of PEDOT: TOS for reduced immunogenicity and biofunctionalization of PEDOT: PSS with RGD peptides for induced cell proliferation was further applied. Atomic Force Microscopy and Spectroscopic Ellipsometry were implemented for nanotopographical, structural, optical and conductivity measurements in parallel with wettability and protein adsorption studies. Direct and extract testing of cell viability and proliferation of L929 fibroblasts on PEDOT samples by MTT assay in line with SEM studies follow. RESULTS: All PEDOT thin films are cytocompatible and promote human serum albumin adsorption. PEDOT:TOS films were found superior regarding cell adhesion as compared to controls. Their nanotopography and hydrophilicity are significant factors that influence cytocompatibility. PEGylation of PEDOT:TOS increases their conductivity and hydrophilicity with similar results on cell viability with bare PEDOT:TOS. The biofunctionalized PEDOT:PSS thin films show enhanced cell proliferation. CONCLUSIONS: The application of PEDOT polymers has evolved as a new perspective to advance stents. GENERAL SIGNIFICANCE: In this work, nanomedicine involving nanotools and novel nanomaterials merges with bioelectronics to stimulate tissue regeneration for cardiovascular implants. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cardiovascular System/drug effects , Electronics, Medical/instrumentation , Nanomedicine/instrumentation , Polymers/chemistry , Prostheses and Implants , Regeneration/physiology , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Electronics, Medical/methods , Fibroblasts/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force/methods , Serum Albumin/metabolism , Spectrum Analysis/methods , Wettability/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL