ABSTRACT
Vinegar is a fermented food produced by alcoholic and then acetic acid microbial metabolism. Date palm fruit (Phoenix dactylifera L.) is a valuable source for the production of vinegar. Microbial identification has a major role in the improvement and bio-management of the fermentation process of vinegar. Estamaran and Kabkab two varieties of date palm fruit were selected to study the fermentation process. A culture-dependent approach was used to study bacterial dynamics. 16 S rRNA gene was amplified by Polymerase Chain Reaction (PCR), also restriction enzyme analysis with HinfI and TaqI, and sequencing was done. Assessment of microbial flora of date palm fruit during fermentation showed that Fructobacillus tropaeoli, Bacillus sp., Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, and Weissella paramesenteroides existed in the first phase of fermentation. With fermentation progress, microbial diversity decreased so only one species remained. Komagataeibacter xylinus as an acid acetic producer was present in the third phase of fermentation. Based on chemical analysis, the concentration of reducing sugars decreased during fermentation. With decreasing pH, a simultaneous increase in acidity and total phenolic compounds occurred. The trend of changes during Estamaran fermentation was more severe and a vinegar with desirable properties was produced. Therefore, this date variety is recommended for the production of date vinegar.