Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Immunol Med ; 46(1): 1-8, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36218322

ABSTRACT

CD4+ T lymphocytes play an essential role in adaptive immune responses. In pathogen infection, naïve CD4+ T cells that strongly respond to foreign antigens robustly proliferate to differentiate into effector/memory cells, contributing to elimination of the pathogen concerned. In addition to this conventional T cell activation pathway, naïve T cells can also weakly respond to self antigens in the periphery to spontaneously acquire a memory phenotype through homeostatic proliferation in steady state. Such 'memory-phenotype' (MP) CD4+ T lymphocytes are distinguishable from foreign antigen-specific memory cells in terms of marker expression. Once generated, MP cells are maintained by rapid proliferation while differentiating into the T-bet+ 'MP1' subset, with the latter response promoted by IL-12 homeostatically produced by type 1 dendritic cells. Importantly, MP1 cells possess innate immune function; they can produce IFN-γ in response to IL-12 and IL-18 to contribute to host defense against pathogens. Similarly, the presence of RORγt+ 'MP17' and Gata3hi 'MP2' cells as well as their potential immune functions have been proposed. In this review, I will discuss our current understanding on the unique mechanisms of generation, maintenance, and differentiation of MP CD4+ T lymphocytes as well as their functional significance in various disease conditions.


Subject(s)
CD4-Positive T-Lymphocytes , Interleukin-12 , CD4-Positive T-Lymphocytes/metabolism , Signal Transduction , Phenotype , Antigens/metabolism , Homeostasis
2.
Biochem Biophys Res Commun ; 637: 9-16, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36375254

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are resident cells and participate in innate and adaptive immunity. In the tumor microenvironment (TME), ILC2s contribute to both tumorigenesis and inhibition of tumor growth, but the true role of ILC2s in TME construction remains unclear. We show that IL-33 treatment induces an anti-tumor effect in vivo in a mouse model of melanoma in which ILC2s and CD8+ T cells infiltrate into tumor tissue. This anti-tumor effect is dependent on CD8+ T cells, however, IL-33 does not act directly on CD8+ T cells because the cells lack ST2, the receptor for IL-33. ILC2s and CD8+ T cells in tumors of IL-33-treated mice express OX40 ligand (OX40L) and OX40, respectively, and in vivo blockade of OX40L-OX40 interaction canceled the anti-tumor effect of IL-33. Co-culture of CD8+ T cells expressing OX40 with IL-33-stimulated ILC2 expressing OX40L promoted cell activation and proliferation of CD8+ T cells, which was significantly suppressed by administration of anti-OX40L blocking antibody. Thus, the IL-33-ILC2 axis promotes CD8+ T cell responses via OX40/OX40L interaction and exerts an anti-tumor effect.


Subject(s)
CD8-Positive T-Lymphocytes , Immunity, Innate , Interleukin-33 , Neoplasms , Receptors, OX40 , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Interleukin-33/immunology , Lymphocytes/immunology , OX40 Ligand/immunology , Receptors, OX40/immunology , Neoplasms/immunology
3.
Sci Immunol ; 7(76): eabm9811, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36306369

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by inflammation of various organs such as skin, kidneys, bones, and brain and the presence of autoantibodies. Although the cause of SLE is not completely understood, environmental factors, genetic susceptibility, hormone factors, and environmental factors are thought to play essential roles in the pathogenesis of SLE. Among environmental factors, the microbiota are linked to the development of different autoimmune diseases. The microbiota in the nasal cavity and gut are involved in SLE development, but the influence of skin microbiota is still unclear. Here, we demonstrated that epithelial cell-specific IκBζ-deficient (NfkbizΔK5) mice showed spontaneous skin inflammation with increased abundance of Staphylococcus aureus on the skin. When S. aureus was epicutaneously applied on NfkbizΔK5 mice, NfkbizΔK5 mice developed SLE-associated autoantibodies, anti-dsDNA antibodies, anti-Sm antibodies, and glomerulonephritis with IgG deposition. Epicutaneous S. aureus application significantly increased staphylococcal colonization on the skin of NfkbizΔK5 mice with reduced expression of several antimicrobial peptides in the skin. This staphylococcal skin colonization promoted caspase-mediated keratinocyte apoptosis and neutrophil activation, inducing the interleukin-23 (IL-23)/IL-17 immune response by activating dendritic cells and T cells. Furthermore, the subcutaneous administration of anti-IL-23p19 and anti-IL-17A antibodies alleviated the systemic autoimmune response. Together, these findings underscore epithelial-immune cross-talk disturbances caused by skin dysbiosis as an essential mediator inducing autoimmune diseases.


Subject(s)
Lupus Erythematosus, Systemic , Staphylococcal Infections , Animals , Mice , Adaptor Proteins, Signal Transducing , Autoantibodies , Inflammation , Interleukin-23 , Neutrophil Activation , Staphylococcus aureus
4.
JMA J ; 5(3): 298-306, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35992294

ABSTRACT

Infectious diseases are posing threats to the world. Although several types of antibiotics and antivirals have been created to treat the diseases, emerging/re-emerging infectious diseases, as well as those caused by pathogens with multidrug resistance, remain to be significant challenges. As a new therapeutic approach, "host-directed therapy" that enhances immune responses of host cells has been proposed. Nevertheless, the agents used in this strategy often lead to a side effect of hyperinflammation, posing a challenge in developing safe and effective drugs. In this review, I suggest boosting a novel CD4+ T lymphocyte population called "memory-phenotype (MP) cells" as a target of the host-directed therapy. MP cells are homeostatically generated from peripheral naïve precursors via recognition of self rather than foreign antigens and are maintained via rapid proliferation in steady state. Surprisingly, MP cells possess innate immune function; they can respond to an inflammatory cytokine IL-12 in the absence of antigen recognition to produce IFN-γ, thereby contributing to host defense against Toxoplasma and Mycobacterium. In this article, I summarize our current understanding of the mechanisms of generation, maintenance, differentiation, and innate effector function of MP CD4+ T lymphocytes and further discuss how we can target these cells as a new therapeutic strategy to infectious and autoimmune/inflammatory diseases.

5.
Front Immunol ; 13: 870542, 2022.
Article in English | MEDLINE | ID: mdl-35707543

ABSTRACT

Under steady-state conditions, conventional CD4+ T lymphocytes are classically divided into naïve (CD44lo CD62Lhi) and memory (CD44hi CD62Llo) cell compartments. While the latter population is presumed to comprise a mixture of distinct subpopulations of explicit foreign antigen (Ag)-specific "authentic" memory and foreign Ag-independent memory-phenotype (MP) cells, phenotypic markers differentially expressed in these two cell types have yet to be identified. Moreover, while MP cells themselves have been previously described as heterogeneous, it is unknown whether they consist of distinct subsets defined by marker expression. In this study, we demonstrate using combined single-cell RNA sequencing and flow cytometric approaches that self-driven MP CD4+ T lymphocytes are divided into CD127hi Sca1lo, CD127hi Sca1hi, CD127lo Sca1hi, and CD127lo Sca1lo subpopulations that are Bcl2lo, while foreign Ag-specific memory cells are CD127hi Sca1hi Bcl2hi. We further show that among the four MP subsets, CD127hi Sca1hi lymphocytes represent the most mature and cell division-experienced subpopulation derived from peripheral naïve precursors. Finally, we provide evidence arguing that this MP subpopulation exerts the highest responsiveness to Th1-differentiating cytokines and can induce colitis. Together, our findings define MP CD4+ T lymphocytes as a unique, self-driven population consisting of distinct subsets that differ from conventional foreign Ag-specific memory cells in marker expression and establish functional relevance for the mature subset of CD127hi Sca1hi MP cells.


Subject(s)
Spinocerebellar Ataxias , T-Lymphocytes , CD4-Positive T-Lymphocytes , Humans , Phenotype , Proto-Oncogene Proteins c-bcl-2/metabolism , Spinocerebellar Ataxias/metabolism , T-Lymphocytes/metabolism , Transcriptome
6.
Immunity ; 55(4): 639-655.e7, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35381213

ABSTRACT

Adaptive CD4+ T helper cells and their innate counterparts, innate lymphoid cells, utilize an identical set of transcription factors (TFs) for their differentiation and functions. However, similarities and differences in the induction of these TFs in related lymphocytes are still elusive. Here, we show that T helper-1 (Th1) cells and natural killer (NK) cells displayed distinct epigenomes at the Tbx21 locus, which encodes T-bet, a critical TF for regulating type 1 immune responses. The initial induction of T-bet in NK precursors was dependent on the NK-specific DNase I hypersensitive site Tbx21-CNS-3, and the expression of the interleukin-18 (IL-18) receptor; IL-18 induced T-bet expression through the transcription factor RUNX3, which bound to Tbx21-CNS-3. By contrast, signal transducer and activator of transcription (STAT)-binding motifs within Tbx21-CNS-12 were critical for IL-12-induced T-bet expression during Th1 cell differentiation both in vitro and in vivo. Thus, type 1 innate and adaptive lymphocytes utilize distinct enhancer elements for their development and differentiation.


Subject(s)
Immunity, Innate , Interleukin-18 , Killer Cells, Natural , Th1 Cells , Cell Differentiation , Interleukin-18/metabolism , Killer Cells, Natural/immunology , T-Box Domain Proteins/metabolism , Th1 Cells/immunology , Transcription Factors/metabolism
7.
Int Immunol ; 34(4): 189-196, 2022 03 25.
Article in English | MEDLINE | ID: mdl-34897483

ABSTRACT

In conventional adaptive immune responses, upon recognition of foreign antigens, naive CD4+ T lymphocytes are activated to differentiate into effector/memory cells. In addition, emerging evidence suggests that in the steady state, naive CD4+ T cells spontaneously proliferate in response to self-antigens to acquire a memory phenotype (MP) through homeostatic proliferation. This expansion is particularly profound in lymphopenic environments but also occurs in lymphoreplete, normal conditions. The 'MP T lymphocytes' generated in this manner are maintained by rapid proliferation in the periphery and they tonically differentiate into T-bet-expressing 'MP1' cells. Such MP1 CD4+ T lymphocytes can exert innate effector function, producing IFN-γ in response to IL-12 in the absence of antigen recognition, thereby contributing to host defense. In this review, we will discuss our current understanding of how MP T lymphocytes are generated and persist in steady-state conditions, their populational heterogeneity as well as the evidence for their effector function. We will also compare these properties with those of a similar population of innate memory cells previously identified in the CD8+ T lymphocyte lineage.


Subject(s)
CD4-Positive T-Lymphocytes , Lymphopenia , CD8-Positive T-Lymphocytes , Humans , Immunologic Memory , Lymphocyte Activation , Phenotype
8.
Article in English | MEDLINE | ID: mdl-33753403

ABSTRACT

Conventional CD4+ and CD8+ T lymphocytes comprise a mixture of naive and memory cells. Generation and survival of these T-cell subsets is under strict homeostatic control and reflects contact with self-major histocompatibility complex (MHC) and certain cytokines. Naive T cells arise in the thymus via T-cell receptor (TCR)-dependent positive selection to self-peptide/MHC complexes and are then maintained in the periphery through self-MHC interaction plus stimulation via interleukin-7 (IL-7). By contrast, memory T cells are largely MHC-independent for their survival but depend strongly on stimulation via cytokines. Whereas typical memory T cells are generated in response to foreign antigens, some arise spontaneously through contact of naive precursors with self-MHC ligands; we refer to these cells as memory-phenotype (MP) T cells. In this review, we discuss the generation and homeostasis of naive T cells and these two types of memory T cells, focusing on their relative interaction with MHC ligands and cytokines.


Subject(s)
Immunologic Memory , Memory T Cells/physiology , Animals , Homeostasis , Humans , Phenotype
9.
Nat Commun ; 11(1): 4624, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32913264

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
FASEB J ; 34(11): 14820-14831, 2020 11.
Article in English | MEDLINE | ID: mdl-32910505

ABSTRACT

Glucocorticoid-induced TNFR family related gene (GITR) is a member of the TNFR superfamily that is expressed on cells of the immune system. Although the protective and pathogenic roles of GITR in T cell immunity are well characterized, the role of GITR in innate immunity in the intestinal tissues has not been well clarified. In this study, using a dextran sulfate sodium (DSS)-induced colitis model in mice, we found that GITR-deficiency rendered mice more susceptible to acute intestinal inflammation and that a significantly higher number of activated natural killer (NK) cells was accumulated in the colonic lamina propria of Gitr-/- mice as compared to wild-type mice. Additionally, Rag2-/- Gitr-/- mice, which lack T cells but have NK cells, also displayed more severe colonic inflammation than Rag2-/- mice. In contrast, an anti-GITR agonistic antibody significantly alleviated colitis in Rag2-/- mice. Engagement of GITR inhibited IL-15-mediated activating signaling events in NK cells, which include cell activation and proliferation, and production of cytokines and cytotoxic granules. Taken together, our results provide the first evidence that GITR negatively controls intestinal inflammation through NK cell functions.


Subject(s)
Colitis, Ulcerative/immunology , Glucocorticoid-Induced TNFR-Related Protein/metabolism , Intestinal Mucosa/immunology , Killer Cells, Natural/immunology , Animals , Cells, Cultured , Colitis, Ulcerative/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Glucocorticoid-Induced TNFR-Related Protein/genetics , Interleukin-15/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL
11.
Toxins (Basel) ; 12(9)2020 08 26.
Article in English | MEDLINE | ID: mdl-32859011

ABSTRACT

Alterations in microbiota are known to affect kidney disease conditions. We have previously shown that germ-free conditions exacerbated adenine-induced kidney damage in mice; however, the mechanism by which this occurs has not been elucidated. To explore this mechanism, we examined the influence of germ-free conditions on purine metabolism and renal immune responses involved in the kidney damage. Germ-free mice showed higher expression levels of purine-metabolizing enzymes such as xanthine dehydrogenase, which converts adenine to a nephrotoxic byproduct 2,8-dihydroxyadenine (2,8-DHA). The germ-free mice also showed increased urinary excretion of allantoin, indicating enhanced purine metabolism. Metabolome analysis demonstrated marked differences in the purine metabolite levels in the feces of germ-free mice and mice with microbiota. Furthermore, unlike the germ-free condition, antibiotic treatment did not increase the expression of purine-metabolizing enzymes or exacerbate adenine-induced kidney damage. Considering renal immune responses, the germ-free mice displayed an absence of renal IL-17A expression. However, the adenine-induced kidney damage in wild-type mice was comparable to that in IL-17A-deficient mice, suggesting that IL-17A does not play a major role in the disease condition. Our results suggest that the enhanced host purine metabolism in the germ-free mice potentially promotes the conversion of the administered adenine into 2,8-DHA, resulting in exacerbated kidney damage. This further suggests a role of the microbiota in regulating host purine metabolism.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Adenine/toxicity , Germ-Free Life/physiology , Purines/metabolism , Acute Kidney Injury/pathology , Animals , Interleukin-17/deficiency , Interleukin-17/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
12.
Nat Commun ; 11(1): 3366, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32632165

ABSTRACT

CD4+ T lymphocytes consist of naïve, antigen-specific memory, and memory-phenotype (MP) cell compartments at homeostasis. We recently showed that MP cells exert innate-like effector function during host defense, but whether MP CD4+ T cells are functionally heterogeneous and, if so, what signals specify the differentiation of MP cell subpopulations under homeostatic conditions is still unclear. Here we characterize MP lymphocytes as consisting of T-bethigh, T-betlow, and T-bet- subsets, with innate, Th1-like effector activity exclusively associated with T-bethigh cells. We further show that the latter population depends on IL-12 produced by CD8α+ type 1 dendritic cells (DC1) for its differentiation. Finally, our data demonstrate that this tonic IL-12 production requires TLR-MyD88 signaling independent of foreign agonists, and is further enhanced by CD40-CD40L interactions between DC1 and CD4+ T lymphocytes. We propose that optimal differentiation of T-bethigh MP lymphocytes at homeostasis is driven by self-recognition signals at both the DC and Tcell levels.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Homeostasis/immunology , Immunologic Memory/immunology , T-Box Domain Proteins/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , CD40 Antigens/immunology , CD40 Antigens/metabolism , CD40 Ligand/genetics , CD40 Ligand/immunology , CD40 Ligand/metabolism , CD8 Antigens/immunology , CD8 Antigens/metabolism , Cell Communication/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-12/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Signal Transduction/immunology , T-Box Domain Proteins/metabolism , Th1 Cells/cytology , Th1 Cells/immunology , Th1 Cells/metabolism
14.
Immunohorizons ; 4(3): 129-139, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32156688

ABSTRACT

TNFR-associated factor 5 (TRAF5) is a cytosolic adaptor protein and functions as an inflammatory regulator. However, the in vivo function of TRAF5 remains unclear, and how TRAF5 controls inflammatory responses in the intestine is not well understood. In this study, we found that intestinal epithelial cells from Traf5-/- mice expressed a significantly lower level of NF-κB-regulated proinflammatory genes, such as Tnf, Il6, and Cxcl1, as early as day 3 after dextran sulfate sodium (DSS) exposure when compared with wild-type mice. The intestinal barrier integrity of DSS-treated Traf5-/- mice remained intact at this early time point, and Traf5-/- mice showed decreased body weight loss and longer colon length at later time points. Surprisingly, the protein level of TRAF2, but not TRAF3, was reduced in colon tissues of Traf5-/- mice after DSS, indicating the requirement of TRAF5 for TRAF2 protein stability in the inflamed colon. Experiments with bone marrow chimeras confirmed that TRAF5 deficiency in nonhematopoietic cells caused the attenuated colitis. Our in vitro experiments demonstrated that proinflammatory cytokines significantly promoted the degradation of TRAF2 protein in Traf5-/- nonhematopoietic cells in a proteasome-dependent manner. Collectively, our data suggest a novel regulatory function of TRAF5 in supporting the proinflammatory function of TRAF2 in nonhematopoietic cells, which may be important for acute inflammatory responses in the intestine.


Subject(s)
Colitis/chemically induced , Colitis/metabolism , Dextran Sulfate/pharmacology , Epithelial Cells/metabolism , Fibroblasts/metabolism , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 5/metabolism , Animals , Cells, Cultured , Colon/metabolism , Cytokines/metabolism , Disease Models, Animal , Inflammation/genetics , Inflammation/metabolism , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , TNF Receptor-Associated Factor 5/genetics , Transfection
15.
Int Immunol ; 32(4): 233-241, 2020 04 12.
Article in English | MEDLINE | ID: mdl-31819988

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) play critical roles in type 2 immunity and are crucial for pathogenesis of various types of inflammatory disease. IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein that is involved in multiple cellular functions such as cell survival and trafficking. While the roles for IQGAP1 in T and B lymphocytes have been uncovered, the physiological significance of IQGAP1 in innate lymphocytes remains to be elucidated. In the current study, we demonstrate that using bone marrow chimeras, the deficiency of IQGAP1 caused an impaired survival of lung ILC2s in a cell-intrinsic manner and that Iqgap1-/- mice displayed decreased accumulation of ILC2s after administration of papain and thereby reduced the pathology of the disease. Moreover, Iqgap1-/- ILC2s showed a significantly enhanced apoptosis as compared to wild-type ILC2s under both steady-state and inflammatory conditions. Together these results identify for the first time that IQGAP1 is essential for homeostasis of ILC2s in the lung.


Subject(s)
Lung/immunology , Lymphocytes/immunology , ras GTPase-Activating Proteins/immunology , Animals , Homeostasis/immunology , Immunity, Innate/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , ras GTPase-Activating Proteins/deficiency
16.
Curr Opin Immunol ; 63: 14-20, 2020 04.
Article in English | MEDLINE | ID: mdl-31786417

ABSTRACT

Self-tolerance of T cells is maintained by a combination of thymic negative selection and suppression by T regulatory cells (Tregs); both processes are driven by recognition of self MHC ligands. Treg function ensures that most T cells remain quiescent as naïve cells, but enables some T cells to proliferate and differentiate into cells with a memory phenotype (MP). In this review, we discuss how Tregs shape this compartmentalization of T cells into subsets of naïve and MP T cells.


Subject(s)
Self Tolerance/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Differentiation/immunology , Humans , Immunologic Memory/immunology , Phenotype
17.
Biochem Biophys Res Commun ; 521(2): 353-359, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31668809

ABSTRACT

The conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs) originate from the same common dendritic cell precursor cells in the bone marrow. The pDCs produce large amounts of type 1 interferon in response to foreign nucleic acid and crucially contribute to host defense against viral infection. Tumor necrosis factor (TNF) receptor-associated factor 5 (TRAF5) is a pivotal component of various TNF receptor signaling pathways in the immune system. Although the functions of TRAF5 in T and B lymphocytes have been well studied, its roles in pDCs remains to be fully elucidated. In this study, we show that the expression of TRAF5 supports the generation of pDCs in the bone marrow and also critically contributes to the homeostasis of the pDC subset in the periphery in a cell-intrinsic manner. Furthermore, we provide evidence that TRAF5 promotes the commitment of DC precursor cells toward pDC versus cDC subsets, which is regulated by the balance of transcription factors TCF4 and ID2. Together our findings reveal that TRAF5 acts as a positive regulator of pDC differentiation from bone marrow progenitors.


Subject(s)
Bone Marrow Cells/cytology , Dendritic Cells/cytology , Stem Cells/cytology , TNF Receptor-Associated Factor 5/physiology , Animals , Bone Marrow , Cell Differentiation , Cells, Cultured , Humans , Inhibitor of Differentiation Protein 2/physiology , Transcription Factor 4/physiology , Transcription Factors/physiology
18.
J Exp Med ; 216(11): 2619-2634, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31405895

ABSTRACT

Host conditioning has emerged as an important component of effective adoptive cell transfer-based immunotherapy for cancer. High levels of IL-1ß are induced by host conditioning, but its impact on the antitumor function of T cells remains unclear. We found that the administration of IL-1ß increased the population size and functionality of adoptively transferred T cells within the tumor. Most importantly, IL-1ß enhanced the ability of tumor-specific T cells to trigger the regression of large, established B16 melanoma tumors in mice. Mechanistically, we showed that the increase in T cell numbers was associated with superior tissue homing and survival abilities and was largely mediated by IL-1ß-stimulated host cells. In addition, IL-1ß enhanced T cell functionality indirectly via its actions on radio-resistant host cells in an IL-2- and IL-15-dependent manner. Our findings not only underscore the potential of provoking inflammation to enhance antitumor immunity but also uncover novel host regulations of T cell responses.


Subject(s)
Immunotherapy, Adoptive/methods , Interleukin-1beta/immunology , Lymphocyte Activation/immunology , Melanoma, Experimental/therapy , T-Lymphocytes/immunology , Adoptive Transfer , Animals , Cell Line, Tumor , Cytokines/blood , Interleukin-1beta/metabolism , Interleukin-6/blood , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation , Tumor Necrosis Factor-alpha/blood
19.
J Immunol ; 203(6): 1447-1456, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31420465

ABSTRACT

The physiological functions of TNF receptor-associated factor 5 (TRAF5) in the skin inflammation and wound healing process are not well characterized. We found that Traf5 -/- mice exhibited an accelerated skin wound healing as compared with wild-type counterparts. The augmented wound closure in Traf5 -/- mice was associated with a massive accumulation of plasmacytoid dendritic cells (pDCs) into skin wounds and an enhanced expression of genes related to wound repair at skin sites. In accordance with this result, adoptive transfer of Traf5 -/- pDCs, but not wild-type pDCs, into the injured skin area in wild-type recipient mice significantly promoted skin wound healing. The expression of skin-tropic chemokine receptor CXCR3 was significantly upregulated in Traf5-/- pDCs, and treatment with a CXCR3 inhibitor cancelled the promoted wound healing in Traf5-/- mice, suggesting a pivotal role of CXCR3 in pDC-dependent wound healing. Traf5 -/- pDCs displayed significantly higher expression of IFN regulatory factor 5 (IRF5), which correlated with greater induction of proinflammatory cytokine genes and CXCR3 protein after stimulation with TLR ligands. Consistently, transduction of exogeneous TRAF5 in Traf5-/- pDCs normalized the levels of abnormally elevated proinflammatory molecules, including IRF5 and CXCR3. Furthermore, knockdown of IRF5 also rescued the abnormal phenotypes of Traf5-/- pDCs. Therefore, the higher expression and induction of IRF5 in Traf5-/- pDCs causes proinflammatory and skin-tropic characteristics of the pDCs, which may accelerate skin wound healing responses. Collectively, our results uncover a novel role of TRAF5 in skin wound healing that is mediated by IRF5-dependent function of pDCs.


Subject(s)
Dendritic Cells/metabolism , Interferon Regulatory Factors/metabolism , TNF Receptor-Associated Factor 5/metabolism , Animals , Cytokines/metabolism , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Receptors, CXCR3/metabolism , Signal Transduction/physiology , Skin/metabolism , Up-Regulation/physiology , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL