Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 183: 114317, 2021 01.
Article in English | MEDLINE | ID: mdl-33152346

ABSTRACT

Coibamide A is a potent cancer cell toxin and one of a select group of natural products that inhibit protein entry into the secretory pathway via a direct inhibition of the Sec61 protein translocon. Many Sec61 client proteins are clinically relevant drug targets once trafficked to their final destination in or outside the cell, however the use of Sec61 inhibitors to block early biosynthesis of specific proteins is at a pre-clinical stage. In the present study we evaluated the action of coibamide A against human epidermal growth factor receptor (HER, ErbB) proteins in representative breast and lung cancer cell types. HERs were selected for this study as they represent a family of Sec61 clients that is frequently dysregulated in human cancers, including coibamide-sensitive cell types. Although coibamide A inhibits biogenesis of a broad range of Sec61 substrate proteins in a presumed substrate-nonselective manner, endogenous HER3 (ErbB-3) and EGFR (ErbB-1) proteins were more sensitive to coibamide A, and the related Sec61 inhibitor apratoxin A, than HER2 (ErbB-2). Despite this rank order of sensitivity (HER3 > EGFR > HER2), Sec61-dependent inhibition by coibamide A was sufficient to decrease cell surface expression of HER2. We report that coibamide A- or apratoxin A-mediated block of HER3 entry into the secretory pathway is unlikely to be mediated by the HER3 signal peptide alone. HER3 (G11L/S15L), that is fully resistant to the highly substrate-selective cotransin analogue CT8, was more resistant than wild-type HER3 but only at low coibamide A (3 nM) concentrations; HER3 (G11L/S15L) expression was inhibited by higher concentrations of either natural product. Time- and concentration-dependent decreases in HER protein expression induced a commensurate reduction in AKT/MAPK signaling in breast and lung cancer cell types and loss in cell viability. Coibamide A potentiated the cytotoxic efficacy of small molecule kinase inhibitors lapatinib and erlotinib in breast and lung cancer cell types, respectively. These data indicate that natural product modulators of Sec61 function have value as chemical probes to interrogate HER/ErbB signaling in treatment-resistant human cancers.


Subject(s)
Depsipeptides/administration & dosage , Drug Delivery Systems/methods , SEC Translocation Channels/antagonists & inhibitors , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , HEK293 Cells , Humans , MCF-7 Cells , SEC Translocation Channels/metabolism
2.
ACS Chem Biol ; 15(8): 2125-2136, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32608972

ABSTRACT

Coibamide A (CbA) is a marine natural product with potent antiproliferative activity against human cancer cells and a unique selectivity profile. Despite promising antitumor activity, the mechanism of cytotoxicity and specific cellular target of CbA remain unknown. Here, we develop an optimized synthetic CbA photoaffinity probe (photo-CbA) and use it to demonstrate that CbA directly targets the Sec61α subunit of the Sec61 protein translocon. CbA binding to Sec61 results in broad substrate-nonselective inhibition of ER protein import and potent cytotoxicity against specific cancer cell lines. CbA targets a lumenal cavity of Sec61 that is partially shared with known Sec61 inhibitors, yet profiling against resistance conferring Sec61α mutations identified from human HCT116 cells suggests a distinct binding mode for CbA. Specifically, despite conferring strong resistance to all previously known Sec61 inhibitors, the Sec61α mutant R66I remains sensitive to CbA. A further unbiased screen for Sec61α resistance mutations identified the CbA-resistant mutation S71P, which confirms nonidentical binding sites for CbA and apratoxin A and supports the susceptibility of the Sec61 plug region for channel inhibition. Remarkably, CbA, apratoxin A, and ipomoeassin F do not display comparable patterns of potency and selectivity in the NCI60 panel of human cancer cell lines. Our work connecting CbA activity with selective prevention of secretory and membrane protein biogenesis by inhibition of Sec61 opens up possibilities for developing new Sec61 inhibitors with improved drug-like properties that are based on the coibamide pharmacophore.


Subject(s)
Depsipeptides/pharmacology , Membrane Proteins/antagonists & inhibitors , SEC Translocation Channels/drug effects , Binding Sites , Cells, Cultured , Depsipeptides/metabolism , Humans , Membrane Proteins/biosynthesis , Photoaffinity Labels/chemistry , SEC Translocation Channels/metabolism
3.
ACS Med Chem Lett ; 9(4): 365-369, 2018 Apr 12.
Article in English | MEDLINE | ID: mdl-29670702

ABSTRACT

Odoamide is a cytotoxic peptide-polyketide hybrid molecule isolated from the Okinawan marine cyanobacterium Okeania sp. For an efficient structure-activity relationship study of the peptide part of odoamide, a facile synthetic protocol was established using a solid-phase peptide synthesis. Among a series of peptides, the d-MeAla6 isomer exhibited a more potent cytotoxicity than natural odoamide. It was also demonstrated that the 26-membered macrocyclic natural odoamide and the 24-membered isomer with comparable cytotoxicities were slowly interconvertible, and both isomers contributed to the potent cytotoxicity of odoamide. Examination of the physicochemical properties revealed that the in vitro cytotoxicity was affected by the serum protein binding of odoamide derivatives, while the differences in the macrocyclic structures had no significant effect on the membrane permeability.

SELECTION OF CITATIONS
SEARCH DETAIL
...