Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 16(5): 363-76, 2016 05.
Article in English | MEDLINE | ID: mdl-27176813

ABSTRACT

UNLABELLED: The Tanpopo mission will address fundamental questions on the origin of terrestrial life. The main goal is to test the panspermia hypothesis. Panspermia is a long-standing hypothesis suggesting the interplanetary transport of microbes. Another goal is to test the possible origin of organic compounds carried from space by micrometeorites before the terrestrial origin of life. To investigate the panspermia hypothesis and the possible space origin of organic compounds, we performed space experiments at the Exposed Facility (EF) of the Japanese Experiment Module (JEM) of the International Space Station (ISS). The mission was named Tanpopo, which in Japanese means dandelion. We capture any orbiting microparticles, such as micrometeorites, space debris, and terrestrial particles carrying microbes as bioaerosols, by using blocks of silica aerogel. We also test the survival of microbial species and organic compounds in the space environment for up to 3 years. The goal of this review is to introduce an overview of the Tanpopo mission with particular emphasis on the investigation of the interplanetary transfer of microbes. The Exposed Experiment Handrail Attachment Mechanism with aluminum Capture Panels (CPs) and Exposure Panels (EPs) was exposed on the EF-JEM on May 26, 2015. The first CPs and EPs will be returned to the ground in mid-2016. Possible escape of terrestrial microbes from Earth to space will be evaluated by investigating the upper limit of terrestrial microbes by the capture experiment. Possible mechanisms for transfer of microbes over the stratosphere and an investigation of the effect of the microbial cell-aggregate size on survivability in space will also be discussed. KEY WORDS: Panspermia-Astrobiology-Low-Earth orbit. Astrobiology 16, 363-376.


Subject(s)
Bacteria/metabolism , Fungi/physiology , Planets , Space Flight , Altitude
2.
Orig Life Evol Biosph ; 45(1-2): 225-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25794831

ABSTRACT

In this paper, we report the progress in developing a silica-aerogel-based cosmic dust capture panel for use in the Tanpopo experiment on the International Space Station (ISS). Previous studies revealed that ultralow-density silica aerogel tiles, comprising two layers with densities of 0.01 and 0.03 g/cm(3) developed using our production technique, were suitable for achieving the scientific objectives of the astrobiological mission. A special density configuration (i.e., box framing) aerogel with a holder was designed to construct the capture panels. Qualification tests for an engineering model of the capture panel as an instrument aboard the ISS were successful. Sixty box-framing aerogel tiles were manufactured in a contamination-controlled environment.


Subject(s)
Cosmic Dust/analysis , Exobiology/methods , Silica Gel/chemistry , Spacecraft
3.
Orig Life Evol Biosph ; 44(1): 43-60, 2014 Feb.
Article in English | MEDLINE | ID: mdl-25086872

ABSTRACT

We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan Experimental Module of the International Space Station. An ultra low-density silica aerogel will be exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In preparation for this study, we simulated particle trapping in an aerogel so that methods could be developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an orbital velocity of ~8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun (acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were recorded with a microscope/camera system for further analysis. The size distribution of the captured particles was smaller than the original distribution, suggesting that the particles had fragmented. We were able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to determine if microbes exist at the International Space Station altitude.


Subject(s)
DNA, Bacterial/analysis , Deinococcus/isolation & purification , Extraterrestrial Environment , Spectrometry, Fluorescence , Benzothiazoles , Deinococcus/genetics , Diamines , Gels , Organic Chemicals , Particle Size , Quinolines , Silicon Dioxide/analysis
4.
Phys Med Biol ; 56(21): 6793-807, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21971079

ABSTRACT

We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm(3) cubic crystals, in contrast to our previous development using 3.0 mm(3) cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm(3) in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm(2), were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.


Subject(s)
Imaging, Three-Dimensional/instrumentation , Photons , Positron-Emission Tomography/instrumentation , Silicates/chemistry , Algorithms , Computer Simulation , Crystallization , Equipment Design , Imaging, Three-Dimensional/methods , Light , Lutetium/chemistry , Monte Carlo Method , Positron-Emission Tomography/methods , Sensitivity and Specificity
5.
Radiol Phys Technol ; 4(2): 134-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21340540

ABSTRACT

Conventionally, block detectors, which consist of a two-dimensionally segmented scintillator array with inserted reflectors, are often used for PET. On the other hand, PET detectors with a monolithic block have been investigated because they are expected to offer higher resolution than do segmented crystal arrays. However, previous reports focused on detectors dedicated as small-animal PET, and the thickness was not good enough to stop 511-keV radiation. We developed a PET detector that uses a large and thick monolithic LYSO and 64-channel PS-PMT. When the LYSO was covered with reflectors, the spatial resolution, which was 3 mm FWHM at the center, rapidly became worse at the edge. We eliminated the loss of spatial resolution by replacing the reflectors with black paper, but the light output was decreased. Therefore, we concluded that spatial resolution and light output were in a trade-off relationship due to the edge effect of scintillation light.


Subject(s)
Positron-Emission Tomography/methods , Scintillation Counting/methods , Equipment Design , Light , Positron-Emission Tomography/instrumentation , Refractometry , Scintillation Counting/instrumentation , Silicon Dioxide/chemistry , Transducers
6.
Phys Med Biol ; 56(4): 1123-37, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21263176

ABSTRACT

The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with (11)C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with (18)F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.


Subject(s)
Positron-Emission Tomography/instrumentation , Animals , Cell Line, Tumor , Feasibility Studies , Female , Humans , Image Processing, Computer-Assisted , Mice , Phantoms, Imaging , Sensitivity and Specificity
7.
J Phys Chem A ; 114(18): 5601-17, 2010 May 13.
Article in English | MEDLINE | ID: mdl-20373821

ABSTRACT

In view of new metal catalysis reactions, CuF-chemiluminescent and plasma reactions in a gaseous Cu-CF(4) system are studied as well as their interactions with a magnetic field. As for the chemiluminescent reaction, the spectroscopic analysis of the CuF chemiluminescence in the reaction of CF(4) with Cu emitted by laser ablation with a fundamental beam of a Nd(3+):YAG laser indicates that the rotational, vibrational, and translational temperatures of the product CuF are rather similar, suggesting the simple heating mechanism. In this mechanism, the high translational energy of the reactant Cu atom will be used to go over the early barrier. The mechanism is evidenced by experimentally observing that the reaction barrier decreases with an increase in the translational energy of the reactant Cu by an increase in the laser power for ablation. On the other hand, in the further study, we find that Cu emitted by laser ablation can switch the plasma in an electric field less than that necessary for the direct discharge in dc-plasma and call it PLASLA (plasma switching by laser ablation). In PLASLA, the plasma is formed by the first ablation, quenched by the second ablation, formed by the third ablation, quenched by the fourth ablation, and so on. Thus PLASLA will be a promising new metal catalysis process for materials science. In particular, the cooperation of the ablation laser with the laser for photoreactions will be significant as a new technique. The studies on the mechanism of PLASLA with metals of Cu, Al, Ag, Zn, Co, Ni, Ti, Mo, and W indicate that the metals are classified into three groups. It is of great interest that the classification agrees with the classification by their electronic configurations. PLASLA is found to be formed rather easily and stable with Al, Ag, Cu, and Zn of group I. Species such as C, C(+), C(2+), and C(2) are observed in the time-resolved spectra of PLASLA luminescence at 0.5 mus after laser ablation, suggesting carbon polymers as the final product. In fact, the TOF (time-of-flight) mass spectrometric analysis of the product material confirms it. Furthermore, PLASLA and the CuF-chemiluminescent reaction are studied in a magnetic field. In the chemiluminescent reaction, we propose that the field switches the reaction paths by mixing the singlet and triplet potential surfaces at level crossing by breaking the spin selection rule. The field affects PLASLA through the MHD (magneto-hydrodynamic) processes such as E x B drifts and cyclotron circulation, as well as the singlet-triplet mixing.

8.
Radiol Phys Technol ; 1(1): 75-82, 2008 Jan.
Article in English | MEDLINE | ID: mdl-20821166

ABSTRACT

The jPET-D4 is a brain positron emission tomography (PET) scanner that we have developed to meet user demands for high sensitivity and high spatial resolution. For this scanner, we developed a four-layer depth-of-interaction (DOI) detector. The four-layer DOI detector is a key component for the jPET-D4, its performance has great influence on the overall system performance. Previously, we reported the original technique for encoding four-layer DOI. Here, we introduce the final design of the jPET-D4 detector and present the results of an investigation on uniformity in performance of the detector. The performance evaluation was done over the 120 DOI crystal blocks for the detectors, which are to be assembled into the jPET-D4 scanner. We also introduce the crystal assembly method, which is simple enough, even though each DOI crystal block is composed of 1,024 crystal elements. The jPET-D4 detector consists of four layers of 16 x 16 Gd(2)SiO(5) (GSO) crystals and a 256-channel flat-panel position-sensitive photomultiplier tube (256ch FP-PMT). To identify scintillated crystals in the four-layer DOI detector, we use pulse shape discrimination and position discrimination on the two-dimensional (2D) position histogram. For pulse shape discrimination, two kinds of GSO crystals that show different scintillation decay time constants are used in the upper two and lower two layers, respectively. Proper reflector arrangement in the crystal block then allows the scintillated crystals to be identified in these two-layer groupings with two 2D position histograms. We produced the 120 DOI crystal blocks for the jPET-D4 system, and measured their characteristics such as the accuracy of pulse shape discrimination, energy resolution, and the pulse height of the full energy peak. The results show a satisfactory and uniform performance of the four-layer DOI crystal blocks; for example, misidentification rate in each GSO layer is <5% based on pulse shape discrimination, the averaged energy resolutions for the central four crystals of the first (farthest from the FP-PMT), second, third, and 4th layers are 15.7 +/- 1.0, 15.8 +/- 0.6, 17.7 +/- 1.2, and 17.3 +/- 1.4%, respectively, and variation in pulse height of the full energy peak among the four layers is <5% on average.


Subject(s)
Brain Diseases/diagnostic imaging , Brain/diagnostic imaging , Positron-Emission Tomography/instrumentation , Brain/pathology , Brain Diseases/pathology , Gadolinium/chemistry , Humans , Positron-Emission Tomography/methods , Reproducibility of Results , Scintillation Counting , Sensitivity and Specificity , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...