Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Cell Cycle ; 23(4): 369-384, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38571319

ABSTRACT

Acetaldehyde, a chemical that can cause DNA damage and contribute to cancer, is prevalently present in our environment, e.g. in alcohol, tobacco, and food. Although aldehyde potentially promotes crosslinking reactions among biological substances including DNA, RNA, and protein, it remains unclear what types of DNA damage are caused by acetaldehyde and how they are repaired. In this study, we explored mechanisms involved in the repair of acetaldehyde-induced DNA damage by examining the cellular sensitivity to acetaldehyde in the collection of human TK6 mutant deficient in each genome maintenance system. Among the mutants, mismatch repair mutants did not show hypersensitivity to acetaldehyde, while mutants deficient in base and nucleotide excision repair pathways or homologous recombination (HR) exhibited higher sensitivity to acetaldehyde than did wild-type cells. We found that acetaldehyde-induced RAD51 foci representing HR intermediates were prolonged in HR-deficient cells. These results indicate a pivotal role of HR in the repair of acetaldehyde-induced DNA damage. These results suggest that acetaldehyde causes complex DNA damages that require various types of repair pathways. Mutants deficient in the removal of protein adducts from DNA ends such as TDP1-/- and TDP2-/- cells exhibited hypersensitivity to acetaldehyde. Strikingly, the double mutant deficient in both TDP1 and RAD54 showed similar sensitivity to each single mutant. This epistatic relationship between TDP1-/- and RAD54-/- suggests that the protein-DNA adducts generated by acetaldehyde need to be removed for efficient repair by HR. Our study would help understand the molecular mechanism of the genotoxic and mutagenic effects of acetaldehyde.


Subject(s)
Acetaldehyde , DNA Damage , DNA Repair , Homologous Recombination , Acetaldehyde/toxicity , Humans , Homologous Recombination/drug effects , Homologous Recombination/genetics , DNA Repair/drug effects , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Mutation/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line
2.
Sci Rep ; 14(1): 690, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184695

ABSTRACT

Despite the development of various in vitro differentiation protocols for the efficient derivation of specific cell types, human induced pluripotent stem cell (hiPSC) lines have varing ability to differentiate into specific lineages. Therefore, surrogate markers for accurately predicting the differentiation propensity of hiPSC lines may facilitate cell-based therapeutic product development and manufacture. We attempted to identify marker genes that could predict the differentiation propensity of hiPSCs into neural stem/progenitor cells (NS/PCs). Using Spearman's rank correlation coefficients, we investigated genes in the undifferentiated state, the expression levels of which were significantly correlated with the neuronal differentiation propensity of several hiPSC lines. Among genes significantly correlated with NS/PC differentiation (P < 0.01), we identified ROR2 as a novel predictive marker. ROR2 expression in hiPSCs was negatively correlated with NS/PC differentiation tendency, regardless of the differentiation method, whereas its knockdown enhanced differentiation. ROR2 regulates NS/PC differentiation, suggesting that ROR2 is functionally essential for NS/PC differentiation. Selecting cell lines with relatively low ROR2 expression facilitated identification of hiPSCs that can differentiate into NS/PCs. Cells with ROR2 knockdown showed increased efficiency of differentiation into forebrain GABAergic neurons compared to controls. These findings suggest that ROR2 is a surrogate marker for selecting hiPSC lines appropriate for NS/PC and GABAergic neuronal differentiations.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Cell Differentiation/genetics , Cell Line , Commerce , GABAergic Neurons , Receptor Tyrosine Kinase-like Orphan Receptors/genetics
3.
Jpn J Clin Oncol ; 54(1): 38-46, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-37815156

ABSTRACT

OBJECTIVE: Endometrial cancer is the most common gynaecological cancer, and most patients are identified during early disease stages. Noninvasive evaluation of lymph node metastasis likely will improve the quality of clinical treatment, for example, by omitting unnecessary lymphadenectomy. METHODS: The study population comprised 611 patients with endometrial cancer who underwent lymphadenectomy at four types of institutions, comprising seven hospitals in total. We systematically assessed the association of 18 preoperative clinical variables with postoperative lymph node metastasis. We then constructed statistical models for preoperative lymph node metastasis prediction and assessed their performance with a previously proposed system, in which the score was determined by counting the number of high-risk variables among the four predefined ones. RESULTS: Of the preoperative 18 variables evaluated, 10 were significantly associated with postoperative lymph node metastasis. A logistic regression model achieved an area under the curve of 0.85 in predicting lymph node metastasis; this value is significantly higher than that from the previous system (area under the curve, 0.74). When we set the false-negative rate to ~1%, the new predictive model increased the rate of true negatives to 21%, compared with 6.8% from the previous one. We also provide a spreadsheet-based tool for further evaluation of its ability to predict lymph node metastasis in endometrial cancer. CONCLUSIONS: Our new lymph node metastasis prediction method, which was based solely on preoperative clinical variables, performed significantly better than the previous method. Although additional evaluation is necessary for its clinical use, our noninvasive system may help improve the clinical treatment of endometrial cancer, complementing minimally invasive sentinel lymph node biopsy.


Subject(s)
Endometrial Neoplasms , Sentinel Lymph Node Biopsy , Female , Humans , Lymphatic Metastasis/pathology , Lymph Node Excision , Endometrial Neoplasms/surgery , Endometrial Neoplasms/pathology , Models, Statistical , Lymph Nodes/surgery , Lymph Nodes/pathology
4.
Stem Cell Reports ; 18(10): 1987-2002, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37683645

ABSTRACT

Primate germ cell development remains largely unexplored due to limitations in sample collection and the long duration of development. In mice, primordial germ cell-like cells (PGCLCs) derived from pluripotent stem cells (PSCs) can develop into functional gametes by in vitro culture or in vivo transplantation. Such PGCLC-mediated induction of mature gametes in primates is highly useful for understanding human germ cell development. Since marmosets generate functional sperm earlier than other species, recapitulating the whole male germ cell development process is technically more feasible. Here, we induced the differentiation of iPSCs into gonocyte-like cells via PGCLCs in marmosets. First, we developed an mRNA transfection-based method to efficiently generate PGCLCs. Subsequently, to promote PGCLC differentiation, xenoreconstituted testes (xrtestes) were generated in the mouse kidney capsule. PGCLCs show progressive DNA demethylation and stepwise expression of developmental marker genes. This study provides an efficient platform for the study of marmoset germ cell development.


Subject(s)
Callithrix , Semen , Humans , Male , Animals , Mice , Germ Cells , Cell Differentiation/genetics , RNA, Messenger/genetics
5.
Front Immunol ; 14: 1209945, 2023.
Article in English | MEDLINE | ID: mdl-37545501

ABSTRACT

Intranasal vaccines that elicit mucosal immunity are deemed effective against respiratory tract infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but their ability to induce humoral immunity characterized by immunoglobulin A (IgA) and IgG production is low. It has been reported that vaccination with a mixture of a viscous base carboxyvinyl polymer (CVP) and viral antigens induced robust systemic and mucosal immune responses. In this study, we analyzed the behavior of immunocompetent cells in the nasal cavity over time by spatial transcriptome profiling induced immediately after antigen vaccination using CVP. We established a method for performing spatial transcriptomics using the Visium system in the mouse nasal cavity and analyzed gene expression profiles within the nasal cavity after intranasal vaccination. Glycoprotein 2 (Gp2)-, SRY-box transcription factor 8 (Sox8)-, or Spi-B transcription factor (Spib)-expressing cells were increased in the nasal passage (NP) region at 3-6 hr after SARS-CoV-2 spike protein and CVP (S-CVP) vaccination. The results suggested that microfold (M) cells are activated within a short period of time (3-6 hr). Subsequent cluster analysis of cells in the nasal cavity showed an increase in Cluster 9 at 3-6 hr after intranasal vaccination with the S-CVP. We found that Il6 in Cluster 9 had the highest log2 fold values within the NP at 3-6 hr. A search for gene expression patterns similar to that of Il6 revealed that the log2 fold values of Edn2, Ccl20, and Hk2 also increased in the nasal cavity after 3-6 hr. The results showed that the early response of immune cells occurred immediately after intranasal vaccination. In this study, we identified changes in gene expression that contribute to the activation of M cells and immunocompetent cells after intranasal vaccination of mice with antigen-CVP using a time-series analysis of spatial transcriptomics data. The results facilitated the identification of the cell types that are activated during the initial induction of nasal mucosal immunity.


Subject(s)
COVID-19 , Transcriptome , Humans , Animals , Mice , Nasal Cavity/chemistry , Interleukin-6 , Antibodies, Viral , SARS-CoV-2 , Vaccination/methods , Gene Expression Profiling
6.
bioRxiv ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37546854

ABSTRACT

The Long-read RNA-Seq Genome Annotation Assessment Project (LRGASP) Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. The consortium generated over 427 million long-read sequences from cDNA and direct RNA datasets, encompassing human, mouse, and manatee species, using different protocols and sequencing platforms. These data were utilized by developers to address challenges in transcript isoform detection and quantification, as well as de novo transcript isoform identification. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. When aiming to detect rare and novel transcripts or when using reference-free approaches, incorporating additional orthogonal data and replicate samples are advised. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.

7.
Neuron ; 111(19): 2995-3010.e9, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37490917

ABSTRACT

The brain is generally resistant to regeneration after damage. The cerebral endogenous mechanisms triggering brain self-recovery have remained unclarified to date. We here discovered that the secreted phospholipase PLA2G2E from peri-infarct neurons generated dihomo-γ-linolenic acid (DGLA) as necessary for triggering brain-autonomous neural repair after ischemic brain injury. Pla2g2e deficiency diminished the expression of peptidyl arginine deiminase 4 (Padi4), a global transcriptional regulator in peri-infarct neurons. Single-cell RNA sequencing (scRNA-seq) and epigenetic analysis demonstrated that neuronal PADI4 had the potential for the transcriptional activation of genes associated with recovery processes after ischemic stroke through histone citrullination. Among various DGLA metabolites, we identified 15-hydroxy-eicosatrienoic acid (15-HETrE) as the cerebral metabolite that induced PADI4 in peri-infarct-surviving neurons. Administration of 15-HETrE enhanced functional recovery after ischemic stroke. Thus, our research clarifies the promising potential of brain-autonomous neural repair triggered by the specialized lipids that initiate self-recovery processes after brain injury.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Stroke , Animals , Humans , Mice , Brain/metabolism , Brain Injuries/metabolism , Infarction/metabolism , Ischemic Stroke/metabolism , Lipid Metabolism
8.
Stem Cells Transl Med ; 12(6): 379-390, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37263619

ABSTRACT

Human multipotent mesenchymal stromal/stem cells (MSCs) have been utilized in cell therapy for various diseases and their clinical applications are expected to increase in the future. However, the variation in MSC-based product quality due to the MSC heterogeneity has resulted in significant constraints in the clinical utility of MSCs. Therefore, we hypothesized that it might be important to identify and ensure/enrich suitable cell subpopulations for therapies using MSC-based products. In this study, we aimed to identify functional cell subpopulations to predict the efficacy of angiogenic therapy using bone marrow-derived MSCs (BM-MSCs). To assess its angiogenic potency, we observed various levels of vascular endothelial growth factor (VEGF) secretion among 11 donor-derived BM-MSC lines under in vitro ischemic culture conditions. Next, by clarifying the heterogeneity of BM-MSCs using single-cell RNA-sequencing analysis, we identified a functional cell subpopulation that contributed to the overall VEGF production in BM-MSC lines under ischemic conditions. We also found that leucine-rich repeat-containing 75A (LRRC75A) was more highly expressed in this cell subpopulation than in the others. Importantly, knockdown of LRRC75A using small interfering RNA resulted in significant inhibition of VEGF secretion in ischemic BM-MSCs, indicating that LRRC75A regulates VEGF secretion under ischemic conditions. Therefore, LRRC75A may be a useful biomarker to identify cell subpopulations that contribute to the angiogenic effects of BM-MSCs. Our work provides evidence that a strategy based on single-cell transcriptome profiles is effective for identifying functional cell subpopulations in heterogeneous MSC-based products.


Subject(s)
Mesenchymal Stem Cells , Vascular Endothelial Growth Factor A , Humans , Bone Marrow Cells , Cell Differentiation , Cell Proliferation , Ischemia/genetics , Ischemia/therapy , Ischemia/metabolism , Single-Cell Gene Expression Analysis , Stem Cells , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factors/metabolism , Vascular Endothelial Growth Factors/pharmacology
9.
Thorac Cancer ; 14(12): 1089-1097, 2023 04.
Article in English | MEDLINE | ID: mdl-36924358

ABSTRACT

BACKGROUND: Thymic squamous cell carcinoma and type B3 thymoma are primary neoplasms of the anterior mediastinum that are sometimes difficult to differentiate from one another histologically. However, only a few immunohistochemical markers are available for the differential diagnosis. The purpose of this study was to discover a novel marker for differentiating between thymic squamous cell carcinoma and type B3 thymoma. METHODS: We used histological samples of thymic carcinomas (n = 26) and type B3 thymomas (n = 38) which were resected between 1986 and 2017. To search for candidates of differential markers, gene expression levels were evaluated in samples using promoter analysis by cap analysis of gene expression (CAGE) sequencing. RESULTS: Promoter level expression of CALML5 genes was significantly higher in thymic carcinomas than in type B3 thymomas. We further validated the results of the CAGE analysis in all 26 thymic carcinomas and 38 type B3 thymomas by immunohistochemistry (IHC). CALML5 was strongly expressed in the cytoplasm in 19 of 26 cases with thymic carcinoma, whereas positivity at the protein level was shown in two of 38 type B3 thymomas. Thus, the sensitivity (73.1%) and specificity (94.7%) of CALML5 as markers for immunohistochemical diagnosis of thymic carcinoma were extremely high. CONCLUSION: We identified CALML5 as a potential marker for differentiating thymic squamous cell carcinoma from type B3 thymoma. It is assumed that future clinical use of CALML5 may improve the diagnostic accuracy of differentiating between these two diseases.


Subject(s)
Carcinoma, Squamous Cell , Thymoma , Thymus Neoplasms , Humans , Biomarkers, Tumor/analysis , Carcinoma, Squamous Cell/pathology , Immunohistochemistry , Thymoma/pathology , Thymus Neoplasms/pathology
10.
Schizophrenia (Heidelb) ; 9(1): 14, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36906656

ABSTRACT

Psychotic-like experiences (PLEs) occur occasionally in adolescence and mostly disappear with increasing age. Their presence, if persistent, is considered a robust risk factor for subsequent psychiatric disorders. To date, only a few biological markers have been investigated for persistent PLE prediction. This study identified urinary exosomal microRNAs that can serve as predictive biomarkers for persistent PLEs. This study was part of a population-based biomarker subsample study of the Tokyo Teen Cohort Study. A total of 345 participants aged 13 (baseline) and 14 (follow-up) years underwent PLE assessments by experienced psychiatrists using semi-structured interviews. We defined remitted and persistent PLEs based on longitudinal profiles. We obtained urine at baseline and the expression levels of urinary exosomal miRNAs were compared between 15 individuals with persistent PLEs and 15 age- and sex-matched individuals with remitted PLEs. We constructed a logistic regression model to examine whether miRNA expression levels could predict persistent PLEs. We identified six significant differentially expressed microRNAs, namely hsa-miR-486-5p, hsa-miR-199a-3p, hsa-miR-144-5p, hsa-miR-451a, hsa-miR-143-3p, and hsa-miR-142-3p. The predictive model showed an area under the curve of 0.860 (95% confidence interval: 0.713-0.993) for five-fold cross-validation. We found a subset of urinary exosomal microRNAs that were differentially expressed in persistent PLEs and presented the likelihood that a microRNA-based statistical model could predict them with high accuracy. Therefore, urine exosomal miRNAs may serve as novel biomarkers for the risk of psychiatric disorders.

11.
Nat Biomed Eng ; 7(6): 830-844, 2023 06.
Article in English | MEDLINE | ID: mdl-36411359

ABSTRACT

Gene transcription is regulated through complex mechanisms involving non-coding RNAs (ncRNAs). As the transcription of ncRNAs, especially of enhancer RNAs, is often low and cell type specific, how the levels of RNA transcription depend on genotype remains largely unexplored. Here we report the development and utility of a machine-learning model (MENTR) that reliably links genome sequence and ncRNA expression at the cell type level. Effects on ncRNA transcription predicted by the model were concordant with estimates from published studies in a cell-type-dependent manner, regardless of allele frequency and genetic linkage. Among 41,223 variants from genome-wide association studies, the model identified 7,775 enhancer RNAs and 3,548 long ncRNAs causally associated with complex traits across 348 major human primary cells and tissues, such as rare variants plausibly altering the transcription of enhancer RNAs to influence the risks of Crohn's disease and asthma. The model may aid the discovery of causal variants and the generation of testable hypotheses for biological mechanisms driving complex traits.


Subject(s)
Genome-Wide Association Study , RNA, Untranslated , Humans , RNA, Untranslated/genetics , Transcription, Genetic/genetics , Genome
12.
PLoS One ; 17(7): e0270506, 2022.
Article in English | MEDLINE | ID: mdl-35776734

ABSTRACT

We previously identified a subtype of schizophrenia (SCZ) characterized by increased plasma pentosidine, a marker of glycation and oxidative stress (PEN-SCZ). However, the genetic factors associated with PEN-SCZ have not been fully clarified. We performed a genome-wide copy number variation (CNV) analysis to identify CNVs associated with PEN-SCZ to provide an insight into the novel therapeutic targets for PEN-SCZ. Plasma pentosidine was measured by high-performance liquid chromatography in 185 patients with SCZ harboring rare CNVs detected by array comparative genomic hybridization. In three patients with PEN-SCZ showing additional autistic features, we detected a novel deletion at 7q31.1 within exons 2 and 3 of IMMP2L, which encodes the inner mitochondrial membrane peptidase subunit 2. The deletion was neither observed in non-PEN-SCZ nor in public database of control subjects. IMMP2L is one of the SCZ risk loci genes identified in a previous SCZ genome-wide association study, and its trans-populational association was recently described. Interestingly, deletions in IMMP2L have been previously linked with autism spectrum disorder. Disrupted IMMP2L function has been shown to cause glycation/oxidative stress in neuronal cells in an age-dependent manner. To our knowledge, this is the first genome-wide CNV study to suggest the involvement of IMMP2L exons 2 and 3 in the etiology of PEN-SCZ. The combination of genomic information with plasma pentosidine levels may contribute to the classification of biological SCZ subtypes that show additional autistic features. Modifying IMMP2L functions may be useful for treating PEN-SCZ if the underlying biological mechanism can be clarified in further studies.


Subject(s)
Schizophrenia , Autism Spectrum Disorder , Comparative Genomic Hybridization , DNA Copy Number Variations , Endopeptidases , Exons , Genome-Wide Association Study , Humans , Oxidative Stress , Schizophrenia/genetics , Schizophrenia/pathology
13.
iScience ; 25(4): 104137, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35402882

ABSTRACT

Double homeobox 4 (DUX4) is expressed at the early pre-implantation stage in human embryos. Here we show that induced human DUX4 expression substantially alters the chromatin accessibility of non-coding DNA and activates thousands of newly identified transcribed enhancer-like regions, preferentially located within ERVL-MaLR repeat elements. CRISPR activation of transcribed enhancers by C-terminal DUX4 motifs results in the increased expression of target embryonic genome activation (EGA) genes ZSCAN4 and KHDC1P1. We show that DUX4 is markedly enriched in human zygotes, followed by intense nuclear DUX4 localization preceding and coinciding with minor EGA. DUX4 knockdown in human zygotes led to changes in the EGA transcriptome but did not terminate the embryos. We also show that the DUX4 protein interacts with the Mediator complex via the C-terminal KIX binding motif. Our findings contribute to the understanding of DUX4 as a regulator of the non-coding genome.

14.
Hum Mol Genet ; 31(13): 2223-2235, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35134173

ABSTRACT

The genetic regulation of ovarian development remains largely unclear. Indeed, in most cases of impaired ovarian development-such as 46,XX disorders of sex development (DSD) without SRY, and premature ovarian insufficiency (POI)-the genetic causes have not been identified, and the vast majority of disease-associated sequence variants could lie within non-coding regulatory sequences. In this study, we aimed to identify enhancers of five ovarian genes known to play key roles in early ovarian development, basing our analysis on the expression of enhancer derived transcripts (eRNAs), which are considered to characterize active enhancers. Temporal expression profile changes in mouse WT1-positive ovarian cells were obtained from cap analysis of gene expression at E13.5, E16.5 and P0. We compared the chronological expression profiles of ovarian-specific eRNA with expression profiles for each of the ovarian-specific genes, yielding two candidate sequences for enhancers of Wnt4 and Rspo1. Both sequences are conserved between mouse and human, and we confirmed their enhancer activities using transient expression assays in murine granulosa cells. Furthermore, by sequencing the region in patients with impaired ovarian development in 24 patients, such as POI, gonadal dysgenesis and 46,XX DSD, we identified rare single nucleotide variants in both sequences. Our results demonstrate that combined analysis of the temporal expression profiles of eRNA and mRNA of target genes presents a powerful tool for locating cis-element enhancers, and a means of identifying disease-associated sequence variants that lie within non-coding regulatory sequences, thus advancing an important unmet need in forward human genetics.


Subject(s)
Menopause, Premature , Primary Ovarian Insufficiency , Animals , Enhancer Elements, Genetic/genetics , Female , Genetic Variation , Humans , Menopause, Premature/genetics , Mice , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/metabolism , RNA/genetics , Time Factors
16.
Sci Data ; 8(1): 159, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183680

ABSTRACT

Cynomolgus macaque (Macaca fascicularis) and common marmoset (Callithrix jacchus) have been widely used in human biomedical research. Long-standing primate genome assemblies used the human genome as a reference for ordering and orienting the assembled fragments into chromosomes. Here we performed de novo genome assembly of these two species without any human genome-based bias observed in the genome assemblies released earlier. We assembled PacBio long reads, and the resultant contigs were scaffolded with Hi-C data, which were further refined based on Hi-C contact maps and alternate de novo assemblies. The assemblies achieved scaffold N50 lengths of 149 Mb and 137 Mb for cynomolgus macaque and common marmoset, respectively. The high fidelity of our assembly is also ascertained by BAC-end concordance in common marmoset. Our assembly of cynomolgus macaque outperformed all the available assemblies of this species in terms of contiguity. The chromosome-scale genome assemblies produced in this study are valuable resources for non-human primate models and provide an important baseline in human biomedical research.


Subject(s)
Callithrix/genetics , Contig Mapping , Macaca fascicularis/genetics , Animals , Chromosomes , Gene Order
17.
Transl Psychiatry ; 11(1): 331, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050135

ABSTRACT

Previously, we identified a subpopulation of schizophrenia (SCZ) showing increased levels of plasma pentosidine, a marker of glycation and oxidative stress. However, its causative genetic factors remain largely unknown. Recently, it has been suggested that dysregulated posttranslational modification by copy number variable microRNAs (CNV-miRNAs) may contribute to the etiology of SCZ. Here, an integrative genome-wide CNV-miRNA analysis was performed to investigate the etiology of SCZ with accumulated plasma pentosidine (PEN-SCZ). The number of CNV-miRNAs and the gene ontology (GO) in the context of miRNAs within CNVs were compared between PEN-SCZ and non-PEN-SCZ groups. Gene set enrichment analysis of miRNA target genes was further performed to evaluate the pathways affected in PEN-SCZ. We show that miRNAs were significantly enriched within CNVs in the PEN-SCZ versus non-PEN-SCZ groups (p = 0.032). Of note, as per GO analysis, the dysregulated neurodevelopmental events in the two groups may have different origins. Additionally, gene set enrichment analysis of miRNA target genes revealed that miRNAs involved in glycation/oxidative stress and synaptic neurotransmission, especially glutamate/GABA receptor signaling, were possibly affected in PEN-SCZ. To the best of our knowledge, this is the first genome-wide CNV-miRNA study suggesting the role of CNV-miRNAs in the etiology of PEN-SCZ, through effects on genes related to glycation/oxidative stress and synaptic function. Our findings provide supportive evidence that glycation/oxidative stress possibly caused by genetic defects related to the posttranscriptional modification may lead to synaptic dysfunction. Therefore, targeting miRNAs may be one of the promising approaches for the treatment of PEN-SCZ.


Subject(s)
MicroRNAs , Schizophrenia , DNA Copy Number Variations , Humans , MicroRNAs/genetics , Schizophrenia/genetics
18.
Sci Rep ; 11(1): 9355, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931666

ABSTRACT

Gene expression is controlled at the transcriptional and post-transcriptional levels. The TACC2 gene was known to be associated with tumors but the control of its expression is unclear. We have reported that activity of the intronic promoter p10 of TACC2 in primary lesion of endometrial cancer is indicative of lymph node metastasis among a low-risk patient group. Here, we analyze the intronic promoter derived isoforms in JHUEM-1 endometrial cancer cells, and primary tissues of endometrial cancers and normal endometrium. Full-length cDNA amplicons are produced by long-range PCR and subjected to nanopore sequencing followed by computational error correction. We identify 16 stable, 4 variable, and 9 rare exons including 3 novel exons validated independently. All variable and rare exons reside N-terminally of the TACC domain and contribute to isoform variety. We found 240 isoforms as high-confidence, supported by more than 20 reads. The large number of isoforms produced from one minor promoter indicates the post-transcriptional complexity coupled with transcription at the TACC2 locus in cancer and normal cells.


Subject(s)
Alternative Splicing , Carrier Proteins/genetics , Endometrial Neoplasms/pathology , Exons , Introns , Promoter Regions, Genetic , RNA, Messenger/metabolism , Tumor Suppressor Proteins/genetics , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Female , Humans , Protein Isoforms , RNA, Messenger/genetics , Tumor Cells, Cultured
19.
Mol Oncol ; 15(5): 1507-1527, 2021 05.
Article in English | MEDLINE | ID: mdl-33682233

ABSTRACT

Cancer-associated fibroblasts (CAFs) regulate cancer progression through the modulation of extracellular matrix (ECM) and cancer cell adhesion. While undergoing a series of phenotypic changes, CAFs control cancer-stroma interactions through integrin receptor signaling. Here, we isolated CAFs from patients with non-small-cell lung cancer (NSCLC) and examined their gene expression profiles. We identified collagen type XI α1 (COL11A1), integrin α11 (ITGA11), and the ITGA11 major ligand collagen type I α1 (COL1A1) among the 390 genes that were significantly enriched in NSCLC-associated CAFs. Increased ITGA11 expression in cancer stroma was correlated with a poor clinical outcome in patients with NSCLC. Increased expression of fibronectin and collagen type I induced ITGA11 expression in CAFs. The cellular migration of CAFs toward collagen type I and fibronectin was promoted via ERK1/2 signaling, independently of the fibronectin receptor integrin α5ß1. Additionally, ERK1/2 signaling induced ITGA11 and COL11A1 expression in cancer stroma. We, therefore, propose that targeting ITGA11 and COL11A1 expressing CAFs to block cancer-stroma interactions may serve as a novel, promising anti-tumor strategy.


Subject(s)
Cancer-Associated Fibroblasts/physiology , Carcinoma, Non-Small-Cell Lung/pathology , Integrin alpha Chains/genetics , Lung Neoplasms/pathology , A549 Cells , Adult , Aged , Carcinoma, Non-Small-Cell Lung/genetics , Case-Control Studies , Cell Movement/genetics , Cells, Cultured , Collagen Type I, alpha 1 Chain/genetics , Collagen Type I, alpha 1 Chain/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Integrin alpha Chains/metabolism , Lung Neoplasms/genetics , Male , Middle Aged , Protein Binding , Up-Regulation/genetics
20.
Stem Cells Transl Med ; 10(6): 895-909, 2021 06.
Article in English | MEDLINE | ID: mdl-33599112

ABSTRACT

The quality and quantity of endothelial progenitor cells (EPCs) are impaired in patients with diabetes mellitus patients, leading to reduced tissue repair during autologous EPC therapy. This study aimed to address the limitations of the previously described serum-free Quantity and Quality Control Culture System (QQc) using CD34+ cells by investigating the therapeutic potential of a novel mononuclear cell (MNC)-QQ. MNCs were isolated from 50 mL of peripheral blood of patients with diabetes mellitus and healthy volunteers (n = 13 each) and subjected to QQc for 7 days in serum-free expansion media with VEGF, Flt-3 ligand, TPO, IL-6, and SCF. The vascular regeneration capability of MNC-QQ cells pre- or post-QQc was evaluated with an EPC colony-forming assay, FACS, EPC culture, tube formation assay, and quantitative real time PCR. For in vivo assessment, 1 × 104 pre- and post-MNC-QQc cells from diabetic donors were injected into a murine wound-healing model using Balb/c nude mice. The percentage of wound closure and angio-vasculogenesis was then assessed. This study revealed vasculogenic, anti-inflammatory, and wound-healing effects of MNC-QQ therapy in both in vitro and in vivo models. This system addresses the low efficiency and efficacy of the current naïve MNC therapy for wound-healing in diabetic patients. As this technique requires a simple blood draw, isolation, and peripheral blood MNC suspension culture for only a week, it can be used as a simple and effective outpatient-based vascular and regenerative therapy for patients with diabetes mellitus.


Subject(s)
Diabetes Mellitus , Leukocytes, Mononuclear , Wound Healing , Animals , Culture Media, Serum-Free , Humans , Leukocytes, Mononuclear/transplantation , Mice , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Physiologic
SELECTION OF CITATIONS
SEARCH DETAIL
...