Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Plant Cell Rep ; 43(2): 51, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308138

ABSTRACT

KEY MESSAGE: We generated a new Koshihikari rice line with a drastically reduced content of glutelin proteins and higher lodging resistance by using new and conventional plant breeding techniques. Using CRISPR/Cas9-mediated genome editing, we generated mutant rice with drastically decreased contents of major glutelins. A Koshihikari rice mutant line, a123, lacking four glutelins (GluA1, GluA2, GluB4, and GluB5) was used as a host, and another five major glutelin genes (GluA3, GluB1a, GluB1b, GluB2, and GluC) were knocked out through two iterations of Agrobacterium-mediated transformation. Mutant seeds were deficient in the GluA family, GluB family, and GluC, and the line obtained was named GluABC KO. Glutelin content was much lower in GluABC KO than in the existing low-glutelin rice mutant LGC-1. A null segregant of GluABC KO was selected using new-generation sequencing and backcrossing, and the sd-1 allele for the semi-dwarf trait was introduced to increase lodging resistance.


Subject(s)
Glutens , Oryza , Glutens/genetics , Glutens/metabolism , Oryza/genetics , Oryza/metabolism , Plant Breeding , Seeds/genetics , Seeds/metabolism , Phenotype
2.
Plant Cell Physiol ; 65(1): 156-168, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37929886

ABSTRACT

Field-grown rice plants are exposed to various stresses at different stages of their life cycle, but little is known about the effects of stage-specific stresses on phenomes and transcriptomes. In this study, we performed integrated time-course multiomics on rice at 3-d intervals from seedling to heading stage under six drought conditions in a well-controlled growth chamber. Drought stress at seedling and reproductive stages reduced yield performance by reducing seed number and setting rate, respectively. High temporal resolution analysis revealed that drought response occurred in two steps: a rapid response via the abscisic acid (ABA) signaling pathway and a slightly delayed DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN (DREB) pathway, allowing plants to respond flexibly to deteriorating soil water conditions. Our long-term time-course multiomics showed that temporary drought stress delayed flowering due to prolonged expression of the flowering repressor gene GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (Ghd7) and delayed expression of the florigen genes HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Our life-cycle multiomics dataset on rice shoots under drought conditions provides a valuable resource for further functional genomic studies to improve crop resilience to drought stress.


Subject(s)
Droughts , Oryza , Animals , Multiomics , Reproduction , Transcriptome , Life Cycle Stages , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
3.
Plant Physiol ; 194(4): 1934-1951, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-37878744

ABSTRACT

Plants remember their exposure to environmental changes and respond more effectively the next time they encounter a similar change by flexibly altering gene expression. Epigenetic mechanisms play a crucial role in establishing such memory of environmental changes and fine-tuning gene expression. With the recent advancements in biochemistry and sequencing technologies, it has become possible to characterize the dynamics of epigenetic changes on scales ranging from short term (minutes) to long term (generations). Here, our main focus is on describing the current understanding of the temporal regulation of histone modifications and chromatin changes during exposure to short-term recurring high temperatures and reevaluating them in the context of natural environments. Investigations of the dynamics of histone modifications and chromatin structural changes in Arabidopsis after repeated exposure to heat at short intervals have revealed the detailed molecular mechanisms of short-term heat stress memory, which include histone modification enzymes, chromatin remodelers, and key transcription factors. In addition, we summarize the spatial regulation of heat responses. Based on the natural temperature patterns during summer, we discuss how plants cope with recurring heat stress occurring at various time intervals by utilizing 2 distinct types of heat stress memory mechanisms. We also explore future research directions to provide a more precise understanding of the epigenetic regulation of heat stress memory.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Epigenesis, Genetic , Heat-Shock Response/genetics , Chromatin/genetics , Chromatin/metabolism , Transcription Factors/metabolism , Plants/metabolism , Gene Expression Regulation, Plant
4.
Rice (N Y) ; 16(1): 55, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063928

ABSTRACT

Root system architecture plays a crucial role in nutrient and water absorption during rice production. Genetic improvement of the rice root system requires elucidating its genetic control. Genome-wide association studies (GWASs) have identified genomic regions responsible for rice root phenotypes. However, candidate gene prioritization around the peak region often suffers from low statistical power and resolution. Transcriptomics enables other statistical mappings, such as transcriptome-wide association study (TWAS) and expression GWAS (eGWAS), which improve candidate gene identification by leveraging the natural variation of the expression profiles. To explore the genes responsible for root phenotypes, we conducted GWAS, TWAS, and eGWAS for 12 root phenotypes in 57 rice accessions using 427,751 single nucleotide polymorphisms (SNPs) and the expression profiles of 16,901 genes expressed in the roots. The GWAS identified three significant peaks, of which the most significant peak responsible for seven root phenotypes (crown root length, crown root surface area, number of crown root tips, lateral root length, lateral root surface area, lateral root volume, and number of lateral root tips) was detected at 6,199,732 bp on chromosome 8. In the most significant GWAS peak region, OsENT1 was prioritized as the most plausible candidate gene because its expression profile was strongly negatively correlated with the seven root phenotypes. In addition to OsENT1, OsEXPA31, OsSPL14, OsDEP1, and OsDEC1 were identified as candidate genes responsible for root phenotypes using TWAS. Furthermore, a cis-eGWAS peak SNP was detected for OsDjA6, which showed the eighth strongest association with lateral root volume in the TWAS. The cis-eGWAS peak SNP for OsDjA6 was in strong linkage disequilibrium (LD) with a GWAS peak SNP on the same chromosome for lateral root volume and in perfect LD with another SNP variant in a putative cis-element at the 518 bp upstream of the gene. These candidate genes provide new insights into the molecular breeding of root system architecture.

5.
Front Plant Sci ; 14: 1193042, 2023.
Article in English | MEDLINE | ID: mdl-37360733

ABSTRACT

Root system architecture affects the efficient uptake of water and nutrients in plants. The root growth angle, which is a critical component in determining root system architecture, is affected by root gravitropism; however, the mechanism of root gravitropism in rice remains largely unknown. In this study, we conducted a time-course transcriptome analysis of rice roots under conditions of simulated microgravity using a three-dimensional clinostat and following gravistimulation to detect candidate genes associated with the gravitropic response. We found that HEAT SHOCK PROTEIN (HSP) genes, which are involved in the regulation of auxin transport, were preferentially up-regulated during simulated microgravity conditions and rapidly down-regulated by gravistimulation. We also found that the transcription factor HEAT STRESS TRANSCRIPTION FACTOR A2s (HSFA2s) and HSFB2s, showed the similar expression patterns with the HSPs. A co-expression network analysis and an in silico motif search within the upstream regions of the co-expressed genes revealed possible transcriptional control of HSPs by HSFs. Because HSFA2s are transcriptional activators, whereas HSFB2s are transcriptional repressors, the results suggest that the gene regulatory networks governed by HSFs modulate the gravitropic response through transcriptional control of HSPs in rice roots.

6.
Plant Cell ; 34(6): 2174-2187, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35258588

ABSTRACT

In the evolutionary history of plants, variation in cis-regulatory elements (CREs) resulting in diversification of gene expression has played a central role in driving the evolution of lineage-specific traits. However, it is difficult to predict expression behaviors from CRE patterns to properly harness them, mainly because the biological processes are complex. In this study, we used cistrome datasets and explainable convolutional neural network (CNN) frameworks to predict genome-wide expression patterns in tomato (Solanum lycopersicum) fruit from the DNA sequences in gene regulatory regions. By fixing the effects of trans-acting factors using single cell-type spatiotemporal transcriptome data for the response variables, we developed a prediction model for crucial expression patterns in the initiation of tomato fruit ripening. Feature visualization of the CNNs identified nucleotide residues critical to the objective expression pattern in each gene, and their effects were validated experimentally in ripening tomato fruit. This cis-decoding framework will not only contribute to the understanding of the regulatory networks derived from CREs and transcription factor interactions, but also provides a flexible means of designing alleles for optimized expression.


Subject(s)
Deep Learning , Solanum lycopersicum , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Nat Plants ; 8(3): 217-224, 2022 03.
Article in English | MEDLINE | ID: mdl-35301445

ABSTRACT

In flowering plants, different lineages have independently transitioned from the ancestral hermaphroditic state into and out of various sexual systems1. Polyploidizations are often associated with this plasticity in sexual systems2,3. Persimmons (the genus Diospyros) have evolved dioecy via lineage-specific palaeoploidizations. More recently, hexaploid D. kaki has established monoecy and also exhibits reversions from male to hermaphrodite flowers in response to natural environmental signals (natural hermaphroditism, NH), or to artificial cytokinin treatment (artificial hermaphroditism, AH). We sought to identify the molecular pathways underlying these polyploid-specific reversions to hermaphroditism. Co-expression network analyses identified regulatory pathways specific to NH or AH transitions. Surprisingly, the two pathways appeared to be antagonistic, with abscisic acid and cytokinin signalling for NH and AH, respectively. Among the genes common to both pathways leading to hermaphroditic flowers, we identified a small-Myb RADIALIS-like gene, named DkRAD, which is specifically activated in hexaploid D. kaki. Consistently, ectopic overexpression of DkRAD in two model plants resulted in hypergrowth of the gynoecium. These results suggest that production of hermaphrodite flowers via polyploidization depends on DkRAD activation, which is not associated with a loss-of-function within the existing sex determination pathway, but rather represents a new path to (or reinvention of) hermaphroditism.


Subject(s)
Diospyros , Disorders of Sex Development , Magnoliopsida , Diospyros/genetics , Flowers/genetics , Polyploidy
8.
Plant J ; 109(5): 1035-1047, 2022 03.
Article in English | MEDLINE | ID: mdl-35128739

ABSTRACT

The repression of transcription from transposable elements (TEs) by DNA methylation is necessary to maintain genome integrity and prevent harmful mutations. However, under certain circumstances, TEs may escape from the host defense system and reactivate their transcription. In Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), DNA demethylases target the sequences derived from TEs in the central cell, the progenitor cell for the endosperm in the female gametophyte. Genome-wide DNA demethylation is also observed in the endosperm after fertilization. In the present study, we used a custom microarray to survey the transcripts generated from TEs during rice endosperm development and at selected time points in the embryo as a control. The expression patterns of TE transcripts are dynamically up- and downregulated during endosperm development, especially those of miniature inverted-repeat TEs (MITEs). Some TE transcripts were directionally controlled, whereas the other DNA transposons and retrotransposons were not. We also discovered the NUCLEAR FACTOR Y binding motif, CCAAT, in the region near the 5' terminal inverted repeat of Youren, one of the transcribed MITEs in the endosperm. Our results uncover dynamic changes in TE activity during endosperm development in rice.


Subject(s)
Arabidopsis , Oryza , Arabidopsis/genetics , DNA Methylation/genetics , DNA Transposable Elements/genetics , Endosperm/genetics , Genome, Plant , Oryza/genetics , Retroelements/genetics
9.
Plant J ; 107(5): 1569-1580, 2021 09.
Article in English | MEDLINE | ID: mdl-34197670

ABSTRACT

A cultivation facility that can assist users in controlling the soil water condition is needed for accurately phenotyping plants under drought stress in an artificial environment. Here we report the Internet of Things-based pot system controlling optional treatment of soil water condition (iPOTs), an automatic irrigation system that mimics the drought condition in a growth chamber. The Wi-Fi-enabled iPOTs system allows water supply from the bottom of the pot, based on the soil water level set by the user, and automatically controls the soil water level at a desired depth. The iPOTs also allows users to monitor environmental parameters, such as soil temperature, air temperature, humidity, and light intensity, in each pot. To verify whether the iPOTs mimics the drought condition, we conducted a drought stress test on rice (Oryza sativa L.) varieties and near-isogenic lines, with diverse root system architecture, using the iPOTs system installed in a growth chamber. Similar to the results of a previous drought stress field trial, the growth of shallow-rooted rice accessions was severely affected by drought stress compared with that of deep-rooted accessions. The microclimate data obtained using the iPOTs system increased the accuracy of plant growth evaluation. Transcriptome analysis revealed that pot positions in the growth chamber had little impact on plant growth. Together, these results suggest that the iPOTs system is a reliable platform for phenotyping plants under drought stress.


Subject(s)
Internet of Things , Oryza/genetics , Soil/chemistry , Stress, Physiological , Water/physiology , Droughts , Gene Expression Profiling , Genotype , Oryza/physiology , Phenotype , Protein Interaction Maps
10.
Plant Cell ; 33(1): 85-103, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33751094

ABSTRACT

In angiosperms, endosperm development comprises a series of developmental transitions controlled by genetic and epigenetic mechanisms that are initiated after double fertilization. Polycomb repressive complex 2 (PRC2) is a key component of these mechanisms that mediate histone H3 lysine 27 trimethylation (H3K27me3); the action of PRC2 is well described in Arabidopsis thaliana but remains uncertain in cereals. In this study, we demonstrate that mutation of the rice (Oryza sativa) gene EMBRYONIC FLOWER2a (OsEMF2a), encoding a zinc-finger containing component of PRC2, causes an autonomous endosperm phenotype involving proliferation of the central cell nuclei with separate cytoplasmic domains, even in the absence of fertilization. Detailed cytological and transcriptomic analyses revealed that the autonomous endosperm can produce storage compounds, starch granules, and protein bodies specific to the endosperm. These events have not been reported in Arabidopsis. After fertilization, we observed an abnormally delayed developmental transition in the endosperm. Transcriptome and H3K27me3 ChIP-seq analyses using endosperm from the emf2a mutant identified downstream targets of PRC2. These included >100 transcription factor genes such as type-I MADS-box genes, which are likely required for endosperm development. Our results demonstrate that OsEMF2a-containing PRC2 controls endosperm developmental programs before and after fertilization.


Subject(s)
Oryza/genetics , Plant Proteins/metabolism , Endosperm/metabolism , Epigenesis, Genetic/genetics , Gene Expression Regulation, Plant/genetics , Mutation/genetics , Plant Proteins/genetics , Transcriptome/genetics
11.
Plant J ; 106(4): 1177-1190, 2021 05.
Article in English | MEDLINE | ID: mdl-33751672

ABSTRACT

Root system architecture affects plant drought resistance and other key agronomic traits such as lodging. However, although phenotypic and genomic variation has been extensively analyzed, few field studies have integrated phenotypic and transcriptomic information, particularly for below-ground traits such as root system architecture. Here, we report the phenotypic and transcriptomic landscape of 61 rice (Oryza sativa) accessions with highly diverse below-ground traits grown in an upland field. We found that four principal components explained the phenotypic variation and that accessions could be classified into four subpopulations (indica, aus, japonica and admixed) based on their tiller numbers and crown root diameters. Transcriptome analysis revealed that differentially expressed genes associated with specific subpopulations were enriched with stress response-related genes, suggesting that subpopulations have distinct stress response mechanisms. Root growth was negatively correlated with auxin-inducible genes, suggesting an association between auxin signaling and upland field conditions. A negative correlation between crown root diameter and stress response-related genes suggested that thicker crown root diameter is associated with resistance to mild drought stress. Finally, co-expression network analysis implemented with DNA affinity purification followed by sequencing analysis identified phytohormone signaling networks and key transcription factors negatively regulating crown root diameter. Our datasets provide a useful resource for understanding the genomic and transcriptomic basis of phenotypic variation under upland field conditions.


Subject(s)
Indoleacetic Acids/metabolism , Oryza/genetics , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Transcriptome , Droughts , Gene Expression Profiling , Oryza/physiology , Phenotype , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/physiology , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Breed Sci ; 70(4): 481-486, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32968351

ABSTRACT

RNA extraction has been improved by integration of a variety of materials in the protocol, such as phenol, guanidine thiocyanate, and silica, according to the case-specific demands. However, few methods have been designed for high-throughput RNA preparation for large-scale transcriptome studies. In this study, we established a high-throughput guanidinium thiocyanate and isopropyl alcohol based RNA extraction method (HighGI). HighGI is based on simple and phenol-free homemade buffers and the cost is substantially lower than a column-based commercial kit. We demonstrated that the quality and quantity of RNA extracted with HighGI were comparable to those extracted with a conventional phenol/chloroform-based method and a column-based commercial kit. HighGI retained small RNAs less than 200 bp, which are lost with a commercial column-based kit. We also demonstrated that HighGI is readily applicable to semi-automated RNA extraction. HighGI enables high-throughput RNA extraction for large-scale RNA preparation with high yield and quality.

14.
G3 (Bethesda) ; 10(5): 1495-1501, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32184372

ABSTRACT

IR64 is a rice variety with high-yield that has been widely cultivated around the world. IR64 has been replaced by modern varieties in most growing areas. Given that modern varieties are mostly progenies or relatives of IR64, genetic analysis of IR64 is valuable for rice functional genomics. However, chromosome-level genome sequences of IR64 have not been available previously. Here, we sequenced the IR64 genome using synthetic long reads obtained by linked-read sequencing and ultra-long reads obtained by nanopore sequencing. We integrated these data and generated the de novo assembly of the IR64 genome of 367 Mb, equivalent to 99% of the estimated size. Continuity of the IR64 genome assembly was improved compared with that of a publicly available IR64 genome assembly generated by short reads only. We annotated 41,458 protein-coding genes, including 657 IR64-specific genes, that are missing in other high-quality rice genome assemblies IRGSP-1.0 of japonica cultivar Nipponbare or R498 of indica cultivar Shuhui498. The IR64 genome assembly will serve as a genome resource for rice functional genomics as well as genomics-driven and/or molecular breeding.


Subject(s)
Nanopore Sequencing , Oryza , Base Sequence , Genome , Genomics , Oryza/genetics
15.
Methods Mol Biol ; 2072: 119-128, 2020.
Article in English | MEDLINE | ID: mdl-31541442

ABSTRACT

Whole-genome bisulfite sequencing (WGBS) is a technique used for the analysis of genome-wide DNA methylation patterns (DNA methylomes) at a single-base resolution. Here, I describe a simple DNA extraction method from rice endosperm and the universal protocol of WGBS, MethylC-sequencing library preparation. The use of benzyl chloride allows for the extraction of high-quality genomic DNA from starchy endosperm, while sodium bisulfite converts unmethylated cytosine to uracil, whereas methylated cytosine is unchanged. The bisulfite conversion of whole genome sequencing libraries before the final amplification step allows for the discrimination of methylated from unmethylated cytosines in a genome-wide manner.


Subject(s)
Edible Grain/genetics , Epigenesis, Genetic , Epigenome , Epigenomics , Genome-Wide Association Study , DNA Methylation , Epigenomics/methods , Gene Library , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA/methods
16.
PLoS Genet ; 15(12): e1008492, 2019 12.
Article in English | MEDLINE | ID: mdl-31887137

ABSTRACT

DNA cytosine methylation is an epigenetic mark associated with silencing of transposable elements (TEs) and heterochromatin formation. In plants, it occurs in three sequence contexts: CG, CHG, and CHH (where H is A, T, or C). The latter does not allow direct inheritance of methylation during DNA replication due to lack of symmetry, and methylation must therefore be re-established every cell generation. Genome-wide association studies (GWAS) have previously shown that CMT2 and NRPE1 are major determinants of genome-wide patterns of TE CHH methylation. Here we instead focus on CHH methylation of individual TEs and TE-families, allowing us to identify the pathways involved in CHH methylation simply from natural variation and confirm the associations by comparing them with mutant phenotypes. Methylation at TEs targeted by the RNA-directed DNA methylation (RdDM) pathway is unaffected by CMT2 variation, but is strongly affected by variation at NRPE1, which is largely responsible for the longitudinal cline in this phenotype. In contrast, CMT2-targeted TEs are affected by both loci, which jointly explain 7.3% of the phenotypic variation (13.2% of total genetic effects). There is no longitudinal pattern for this phenotype, however, because the geographic patterns appear to compensate for each other in a pattern suggestive of stabilizing selection.


Subject(s)
Arabidopsis/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , DNA Transposable Elements , DNA-Directed RNA Polymerases/genetics , Arabidopsis Proteins/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant , Genetic Loci , Genetic Variation , Genome-Wide Association Study , Phenotype , Sequence Analysis, DNA
17.
Breed Sci ; 69(2): 191-204, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31481828

ABSTRACT

DNA methylation is an epigenetic modification that can affect gene expression and transposable element (TE) activities. Because cytosine DNA methylation patterns are inherited through both mitotic and meiotic cell divisions, differences in these patterns can contribute to phenotypic variability. Advances in high-throughput sequencing technologies have enabled the generation of abundant DNA sequence data. Integrated analyses of genome-wide gene expression patterns and DNA methylation patterns have revealed the underlying mechanisms and functions of DNA methylation. Moreover, associations between DNA methylation and agronomic traits have also been uncovered. The resulting information may be useful for future applications of natural epigenomic variation, for crop breeding. Additionally, artificial epigenome editing may be an attractive new plant breeding technique for generating novel varieties with improved agronomic traits.

18.
Plant J ; 98(1): 97-111, 2019 04.
Article in English | MEDLINE | ID: mdl-30556936

ABSTRACT

Separating male and female sex organs is one of the main strategies used to maintain genetic diversity within a species. However, the genetic determinants and their regulatory mechanisms have been identified in only a few species. In dioecious persimmons, the homeodomain transcription factor, MeGI, which is the target of a Y chromosome-encoded small-RNA, OGI, can determine floral sexuality. The basic features of this system are conserved in the monoecious hexaploid Oriental persimmon, in which an additional epigenetic regulation of MeGI determines floral sexuality. The downstream regulatory pathways of MeGI remain uncharacterized. In this study, we examined transcriptomic data for male and female flowers from monoecious persimmon cultivars to unveil the gene networks orchestrated by MeGI. A network visualization and cistrome assessment suggested that class-1 KNOTTED-like homeobox (KNOX)/ovate family protein (OFP)/growth regulating factors (GRFs) and short vegetative phase (SVP) genes mediate the differences in gynoecium and androecium development between male and female flowers, respectively. The expression of these genes is directly controlled by MeGI. The gene networks also suggested that some cytokinin, auxin, and gibberellin signaling genes function cooperatively in the KNOX/OFP/GRF pathway during gynoecium differentiation. Meanwhile, SVP may repress PI expression in developing androecia. Overall, our results suggest that MeGI evolved the ability to promote gynoecium development and suppress androecium development by regulating KNOX/OFP/GRF and SVP expression levels, respectively. These insights may help to clarify the molecular mechanism underlying the production of unisexual flowers, while also elucidating the physiological background enabling a single-factor system to establish dioecy in plants.


Subject(s)
Diospyros/genetics , Gene Regulatory Networks , Plant Growth Regulators/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcriptome , Cytokinins/metabolism , Diospyros/growth & development , Diospyros/physiology , Epigenesis, Genetic , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics
19.
Plant Biotechnol J ; 16(12): 2007-2015, 2018 12.
Article in English | MEDLINE | ID: mdl-29704881

ABSTRACT

To induce transcriptional gene silencing (TGS) of endogenous genes of rice (Oryza sativa L.), we expressed double-strand RNA of each promoter region and thus induced RNA-directed DNA methylation (RdDM). We targeted constitutively expressed genes encoding calnexin (CNX), protein disulphide isomerase (PDIL1-1) and luminal binding protein (BiP1); an endoplasmic reticulum stress-inducible gene (OsbZIP50); and genes with seed-specific expression encoding α-globulin (Glb-1) and glutelin-B4 (GluB4). TGS of four genes was obtained with high efficiency (CNX, 66.7% of regenerated plants; OsBiP1, 67.4%; OsbZIP50, 63.4%; GluB4, 66.1%), whereas the efficiency was lower for PDIL1-1 (33.3%) and Glb-1 TGS lines (10.5%). The heredity of TGS, methylation levels of promoter regions and specificity of silencing of the target gene were investigated in some of the TGS lines. In progeny of CNX and OsbZIP50 TGS lines, suppression of the target genes was preserved (except in the endosperm) even after the removal of trigger genes (T-DNA) by segregation. TGS of CNX was reverted by demethylation treatment, and a significant difference in CG and CHG methylation levels in the -1 to -250 bp region of the CNX promoter was detected between the TGS and revertant lines, suggesting that TGS is closely related to the methylation levels of promoter. TGS exhibited specific suppression towards the target gene compared with post-transcriptional gene silencing when GluB4 gene from glutelin multigene family was targeted. Based on these results, future perspectives and problems to be solved in the application of RdDM to new plant breeding techniques in rice are discussed.


Subject(s)
DNA Methylation/genetics , Gene Silencing , Genes, Plant/genetics , Oryza/genetics , RNA, Plant/genetics , Transgenes/genetics , Gene Expression Regulation, Plant/genetics , Genetic Engineering/methods , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , RNA, Plant/metabolism
20.
Genome Biol ; 18(1): 171, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28911331

ABSTRACT

BACKGROUND: Unlike animals, plants can pause their life cycle as dormant seeds. In both plants and animals, DNA methylation is involved in the regulation of gene expression and genome integrity. In animals, reprogramming erases and re-establishes DNA methylation during development. However, knowledge of reprogramming or reconfiguration in plants has been limited to pollen and the central cell. To better understand epigenetic reconfiguration in the embryo, which forms the plant body, we compared time-series methylomes of dry and germinating seeds to publicly available seed development methylomes. RESULTS: Time-series whole genome bisulfite sequencing reveals extensive gain of CHH methylation during seed development and drastic loss of CHH methylation during germination. These dynamic changes in methylation mainly occur within transposable elements. Active DNA methylation during seed development depends on both RNA-directed DNA methylation and heterochromatin formation pathways, whereas global demethylation during germination occurs in a passive manner. However, an active DNA demethylation pathway is initiated during late seed development. CONCLUSIONS: This study provides new insights into dynamic DNA methylation reprogramming events during seed development and germination and suggests possible mechanisms of regulation. The observed sequential methylation/demethylation cycle suggests an important role of DNA methylation in seed dormancy.


Subject(s)
Arabidopsis/genetics , DNA Methylation , DNA, Plant/metabolism , Germination/genetics , Plant Dormancy/genetics , Seeds/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , DNA Modification Methylases/metabolism , Endosperm/metabolism , Metabolic Networks and Pathways , Nuclear Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...