Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Transl Med ; 16(757): eadg0338, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39047116

ABSTRACT

Donor organ shortages for transplantation remain a serious global concern, and alternative treatment is in high demand. Fetal cells and tissues have considerable therapeutic potential as, for example, organoid technology that uses human induced pluripotent stem cells (hiPSCs) to generate unlimited human fetal-like cells and tissues. We previously reported the in vivo vascularization of early fetal liver-like hiPSC-derived liver buds (LBs) and subsquent improved survival of recipient mice with subacute liver failure. Here, we show hiPSC-liver organoids (LOs) that recapitulate midgestational fetal liver promote de novo liver generation when grafted onto the surface of host livers in chemical fibrosis models, thereby recovering liver function. We found that fetal liver, a hematopoietic tissue, highly expressed macrophage-recruiting factors and antifibrotic M2 macrophage polarization factors compared with the adult liver, resulting in fibrosis reduction because of CD163+ M2-macrophage polarization. Next, we created midgestational fetal liver-like hiPSC-LOs by fusion of hiPSC-LBs to induce static cell-cell interactions and found that these contained complex structures such as hepatocytes, vasculature, and bile ducts after transplantation. This fusion allowed the generation of a large human tissue suitable for transplantation into immunodeficient rodent models of liver fibrosis. hiPSC-LOs showed superior liver function compared with hiPSC-LBs and improved survival and liver function upon transplantation. In addition, hiPSC-LO transplantation ameliorated chemically induced liver fibrosis, a symptom of liver cirrhosis that leads to organ dysfunction, through immunomodulatory effects, particularly on CD163+ phagocytic M2-macrophage polarization. Together, our results suggest hiPSC-LO transplantation as a promising therapeutic option for liver fibrosis.


Subject(s)
Immunomodulation , Induced Pluripotent Stem Cells , Liver Cirrhosis , Liver , Organoids , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/therapy , Animals , Liver/pathology , Macrophages , Liver Transplantation , Mice
2.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769019

ABSTRACT

Liver transplantation is the most effective treatment for end-stage cirrhosis. However, due to serious donor shortages, new treatments to replace liver transplantation are sorely needed. Recent studies have focused on novel therapeutic methods using hepatocytes and induced pluripotent stem cells, we try hard to develop methods for transplanting these cells to the liver surface. In the present study, we evaluated several methods for their efficiency in the detachment of serous membrane covering the liver surface for transplantation to the liver surface. The liver surface of dipeptidyl peptidase IV (DPPIV)-deficient rats in a cirrhosis model was detached by various methods, and then fetal livers from DPPIV-positive rats were transplanted. We found that the engraftment rate and area as well as the liver function were improved in rats undergoing transplantation following serous membrane detachment with an ultrasonic homogenizer, which mimics the Cavitron Ultrasonic Surgical Aspirator® (CUSA), compared with no detachment. Furthermore, the bleeding amount was lower with the ultrasonic homogenizer method than with the needle and electric scalpel methods. These findings provide evidence that transplantation to the liver surface with serous membrane detachment using CUSA might contribute to the development of new treatments for cirrhosis using cells or tissues.


Subject(s)
Liver Cirrhosis/pathology , Liver/pathology , Serous Membrane/pathology , Animals , Dipeptidyl Peptidase 4/metabolism , Disease Models, Animal , Female , Hepatectomy/methods , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Transplantation/methods , Rats , Rats, Inbred F344 , Serous Membrane/metabolism , Ultrasonic Therapy/methods , Ultrasonics/methods
SELECTION OF CITATIONS
SEARCH DETAIL