Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990554

ABSTRACT

Innate inflammation promotes tumor development, although the role of innate inflammatory cytokines in established human tumors is unclear. Here we report clinical and translational results from a phase Ib trial testing whether IL-1ß blockade in human pancreatic cancer would alleviate myeloid immunosuppression and reveal antitumor T-cell responses to PD-1 blockade. Patients with treatment-naïve advanced pancreatic ductal adenocarcinoma (n=10) were treated with canakinumab, a high-affinity monoclonal human anti-interleukin-1ß (IL-1ß), the PD-1 blocking antibody spartalizumab, and gemcitabine/n(ab)paclitaxel. Analysis of paired peripheral blood from patients in the trial versus patients receiving multiagent chemotherapy showed a modest increase in HLA-DR+CD38+ activated CD8+ T cells and a decrease in circulating monocytic myeloid-derived suppressor cells (MDSCs) by flow cytometry for patients in the trial, but not in controls. Similarly, we used patient serum to differentiate monocytic MDSCs in vitro and showed that functional inhibition of T-cell proliferation was reduced when using on-treatment serum samples from patients in the trial but not when using serum from patients treated with chemotherapy alone. Within the tumor we observed few changes in suppressive myeloid-cell populations or activated T cells as assessed by single-cell transcriptional profiling or multiplex immunofluorescence, although increases in CD8+ T cells suggest that improvements in the tumor immune microenvironment might be revealed by a larger study. Overall, the data indicate that exposure to PD-1 and IL-1ß blockade induced a modest reactivation of peripheral CD8+ T cells and decreased circulating monocytic MDSCs; however, these changes did not lead to similarly uniform alterations in the tumor microenvironment.

3.
Nat Commun ; 14(1): 797, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36781852

ABSTRACT

The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) is a complex ecosystem that drives tumor progression; however, in-depth single cell characterization of the PDAC TME and its role in response to therapy is lacking. Here, we perform single-cell RNA sequencing on freshly collected human PDAC samples either before or after chemotherapy. Overall, we find a heterogeneous mixture of basal and classical cancer cell subtypes, along with distinct cancer-associated fibroblast and macrophage subpopulations. Strikingly, classical and basal-like cancer cells exhibit similar transcriptional responses to chemotherapy and do not demonstrate a shift towards a basal-like transcriptional program among treated samples. We observe decreased ligand-receptor interactions in treated samples, particularly between TIGIT on CD8 + T cells and its receptor on cancer cells, and identify TIGIT as the major inhibitory checkpoint molecule of CD8 + T cells. Our results suggest that chemotherapy profoundly impacts the PDAC TME and may promote resistance to immunotherapy.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Tumor Microenvironment/genetics , Ecosystem , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Sequence Analysis, RNA , Pancreatic Neoplasms
4.
Cancer Med ; 12(3): 2345-2355, 2023 02.
Article in English | MEDLINE | ID: mdl-35906821

ABSTRACT

BACKGROUND: Genetic testing is recommended for all pancreatic ductal adenocarcinoma (PDAC) patients. Prior research demonstrates that multidisciplinary pancreatic cancer clinics (MDPCs) improve treatment- and survival-related outcomes for PDAC patients. However, limited information exists regarding the utility of integrated genetics in the MDPC setting. We hypothesized that incorporating genetics in an MDPC serving both PDAC patients and high-risk individuals (HRI) could: (1) improve compliance with guideline-based genetic testing for PDAC patients, and (2) optimize HRI identification and PDAC surveillance participation to improve early detection and survival. METHODS: Demographics, genetic testing results, and pedigrees were reviewed for PDAC patients and HRI at one institution over 45 months. Genetic testing analyzed 16 PDAC-associated genes at minimum. RESULTS: Overall, 969 MDPC subjects were evaluated during the study period; another 56 PDAC patients were seen outside the MDPC. Among 425 MDPC PDAC patients, 333 (78.4%) completed genetic testing; 29 (8.7%) carried a PDAC-related pathogenic germline variant (PGV). Additionally, 32 (9.6%) met familial pancreatic cancer (FPC) criteria. These PDAC patients had 191 relatives eligible for surveillance or genetic testing. Only 2/56 (3.6%) non-MDPC PDAC patients completed genetic testing (p < 0.01). Among 544 HRI, 253 (46.5%) had a known PGV or a designation of FPC, and were eligible for surveillance at baseline; of the remainder, 15/291 (5.2%) were eligible following genetic testing and PGV identification. CONCLUSION: Integrating genetics into the multidisciplinary setting significantly improved genetic testing compliance by reducing logistical barriers for PDAC patients, and clarified cancer risks for their relatives while conserving clinical resources. Overall, we identified 206 individuals newly eligible for surveillance or genetic testing (191 relatives of MDPC PDAC patients, and 15 HRI from this cohort), enabling continuity of care for PDAC patients and at-risk relatives in one clinic.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Genetic Predisposition to Disease , Pancreatic Neoplasms/pathology , Genetic Testing , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms
5.
Gynecol Oncol ; 167(2): 323-333, 2022 11.
Article in English | MEDLINE | ID: mdl-36150916

ABSTRACT

OBJECTIVE: Treatment options and associated biomarkers for advanced and recurrent disease are limited. Endometrial cancers (ECs) with CTNNB1 exon 3 mutations appear to have preferential response to bevacizumab, an anti-angiogenesis treatment, though the mechanism of action is unknown. We aim to identify mediators of bevacizumab-responsive endometrial cancers. METHODS: We analyzed RNA expression from TCGA and protein expression from CPTAC to identify likely targets for ß-catenin overactivity. We then transiently and stably overexpressed ß-catenin in EC cells to confirm the results suggested by our in silico analysis. We performed corroborative experiments by silencing CTNNB1 in mutated cell lines to demonstrate functional specificity. We implanted transduced cells into xenograft models to study microvessel density. RESULTS: CTNNB1-mutated ECs were associated with increased ß-catenin and MMP7 protein abundance (P < 0.001), but not VEGF-A protein abundance. Overexpressing ß-catenin in EC cells did not increase VEGF-A abundance but did increase expression and secretion of MMP7 (P < 0.03). Silencing CTNNB1 in CTNNB1-mutated cells decreased MMP7 gene expression in EC (P < 0.0001). Microvessel density was not increased. CONCLUSIONS: These data provide a mechanistic understanding for bevacizumab-response in CTNNB1-mutated ECs demonstrated in GOG-86P. We hypothesize that overexpressed and secreted MMP7 potentially digests VEGFR-1, releasing VEGF-A, and increasing its availability. These activities may drive the formation of permeable vessels, which contributes to tumor progression, metastasis, and immune suppression. This mechanism is unique to EC and advocates for further clinical trials evaluating this treatment-related biomarker.


Subject(s)
Angiogenesis Inhibitors , Bevacizumab , Endometrial Neoplasms , Matrix Metalloproteinase 7 , Neovascularization, Pathologic , beta Catenin , Female , Humans , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , beta Catenin/genetics , beta Catenin/metabolism , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Endometrial Neoplasms/blood supply , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Matrix Metalloproteinase 7/metabolism , Mutation , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Vascular Endothelial Growth Factor A/metabolism
6.
J Proteome Res ; 20(7): 3767-3773, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34165986

ABSTRACT

Unbiased assays such as shotgun proteomics and RNA-seq provide high-resolution molecular characterization of tumors. These assays measure molecules with highly varied distributions, making interpretation and hypothesis testing challenging. Samples with the most extreme measurements for a molecule can reveal the most interesting biological insights yet are often excluded from analysis. Furthermore, rare disease subtypes are, by definition, underrepresented in cancer cohorts. To provide a strategy for identifying molecules aberrantly enriched in small sample cohorts, we present BlackSheep, a package for nonparametric description and differential analysis of genome-wide data, available from Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/blacksheepr.html) and Bioconda (https://bioconda.github.io/recipes/blksheep/README.html). BlackSheep is a complementary tool to other differential expression analysis methods, which is particularly useful when analyzing small subgroups in a larger cohort.


Subject(s)
Genome , Software , Humans , Proteomics
7.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32649874

ABSTRACT

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Proteogenomics , Adenocarcinoma of Lung/immunology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Female , Humans , Lung Neoplasms/immunology , Male , Middle Aged , Mutation/genetics , Oncogene Proteins, Fusion , Phenotype , Phosphoproteins/metabolism , Proteome/metabolism
8.
Cell ; 180(4): 729-748.e26, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32059776

ABSTRACT

We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/ß-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.


Subject(s)
Carcinoma/genetics , Endometrial Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Proteome/genetics , Transcriptome , Acetylation , Animals , Antigens, Neoplasm/genetics , Carcinoma/immunology , Carcinoma/pathology , Endometrial Neoplasms/immunology , Endometrial Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Feedback, Physiological , Female , Genomic Instability , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Microsatellite Repeats , Phosphorylation , Protein Processing, Post-Translational , Proteome/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...