Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Biomed Mater Res B Appl Biomater ; 112(6): e35433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38817048

ABSTRACT

Ex vivo tissue engineering is an effective therapeutic approach for the treatment of severe cartilage diseases that require tissue replenishment or replacement. This strategy demands scaffolds that are durable enough for long-term cell culture to form artificial tissue. Additionally, such scaffolds must be biocompatible to prevent the transplanted matrix from taking a toll on the patient's body. From the viewpoint of structure and bio-absorbability, a ß-tricalcium phosphate (ß-TCP) fiber scaffold (ßTFS) is expected to serve as a good scaffold for tissue engineering. However, the fragility and high solubility of ß-TCP fibers make this matrix unsuitable for long-term cell culture. To solve this problem, we developed an alginate-coated ß-TCP fiber scaffold (ßTFS-Alg). To assess cell proliferation and differentiation in the presence of ßTFS-Alg, we characterized ATDC5 cells, a chondrocyte-like cell line, when grown in this matrix. We found that alginate coated the surface of ßTFS fiber and suppressed the elution of Ca2+ from ß-TCP fibers. Due to the decreased solubility of ßTFS-Alg compared with ß-TCP, the former provided an improved scaffold for long-term cell culture. Additionally, we observed superior cell proliferation and upregulation of chondrogenesis marker genes in ATDC5 cells cultured in ßTFS-Alg. These results suggest that ßTFS-Alg is suitable for application in tissue culture.


Subject(s)
Alginates , Calcium Phosphates , Tissue Scaffolds , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Alginates/chemistry , Tissue Scaffolds/chemistry , Cell Proliferation , Mice , Glucuronic Acid/chemistry , Animals , Hexuronic Acids/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Cell Line , Chondrocytes/cytology , Chondrocytes/metabolism , Tissue Engineering , Materials Testing , Cell Differentiation , Humans , Cell Culture Techniques
2.
Gastroenterology ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38583723

ABSTRACT

BACKGROUND & AIMS: Gastric cancer is often accompanied by a loss of mucin 6 (MUC6), but its pathogenic role in gastric carcinogenesis remains unclear. METHODS: Muc6 knockout (Muc6-/-) mice and Muc6-dsRED mice were newly generated. Tff1Cre, Golph3-/-, R26-Golgi-mCherry, Hes1flox/flox, Cosmcflox/flox, and A4gnt-/- mice were also used. Histology, DNA and RNA, proteins, and sugar chains were analyzed by whole-exon DNA sequence, RNA sequence, immunohistochemistry, lectin-binding assays, and liquid chromatography-mass spectrometry analysis. Gastric organoids and cell lines were used for in vitro assays and xenograft experiments. RESULTS: Deletion of Muc6 in mice spontaneously causes pan-gastritis and invasive gastric cancers. Muc6-deficient tumor growth was dependent on mitogen-activated protein kinase activation, mediated by Golgi stress-induced up-regulation of Golgi phosphoprotein 3. Glycomic profiling revealed aberrant expression of mannose-rich N-linked glycans in gastric tumors, detected with banana lectin in association with lack of MUC6 expression. We identified a precursor of clusterin as a binding partner of mannose glycans. Mitogen-activated protein kinase activation, Golgi stress responses, and aberrant mannose expression are found in separate Cosmc- and A4gnt-deficient mouse models that lack normal O-glycosylation. Banana lectin-drug conjugates proved an effective treatment for mannose-rich murine and human gastric cancer. CONCLUSIONS: We propose that Golgi stress responses and aberrant glycans are important drivers of and promising new therapeutic targets for gastric cancer.

3.
Small ; 20(27): e2310239, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38299473

ABSTRACT

Solid-state hydrogen storage materials are safe and lightweight hydrogen carriers. Among the various solid-state hydrogen carriers, hydrogen boride (HB) sheets possess a high gravimetric hydrogen capacity (8.5 wt%). However, heating at high temperatures and/or strong ultraviolet illumination is required to release hydrogen (H2) from HB sheets. In this study, the electrochemical H2 release from HB sheets using a dispersion system in an organic solvent without other proton sources is investigated. H2 molecules are released from the HB sheets under the application of a cathodic potential. The Faradaic efficiency for H2 release from HB sheets reached >90%, and the onset potential for H2 release is -0.445 V versus Ag/Ag+, which is more positive than those from other proton sources, such as water or formic acid, under the same electrochemical conditions. The total electrochemically released H2 in a long-time experiment reached ≈100% of the hydrogen capacity of HB sheets. The H2 release from HB sheets is driven by a small bias; thus, they can be applied as safe and lightweight hydrogen carriers with economical hydrogen release properties.

4.
J Clin Invest ; 132(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35380992

ABSTRACT

Enhanced de novo lipogenesis mediated by sterol regulatory element-binding proteins (SREBPs) is thought to be involved in nonalcoholic steatohepatitis (NASH) pathogenesis. In this study, we assessed the impact of SREBP inhibition on NASH and liver cancer development in murine models. Unexpectedly, SREBP inhibition via deletion of the SREBP cleavage-activating protein (SCAP) in the liver exacerbated liver injury, fibrosis, and carcinogenesis despite markedly reduced hepatic steatosis. These phenotypes were ameliorated by restoring SREBP function. Transcriptome and lipidome analyses revealed that SCAP/SREBP pathway inhibition altered the fatty acid (FA) composition of phosphatidylcholines due to both impaired FA synthesis and disorganized FA incorporation into phosphatidylcholine via lysophosphatidylcholine acyltransferase 3 (LPCAT3) downregulation, which led to endoplasmic reticulum (ER) stress and hepatocyte injury. Supplementation with phosphatidylcholines significantly improved liver injury and ER stress induced by SCAP deletion. The activity of the SCAP/SREBP/LPCAT3 axis was found to be inversely associated with liver fibrosis severity in human NASH. SREBP inhibition also cooperated with impaired autophagy to trigger liver injury. Thus, excessively strong and broad lipogenesis inhibition was counterproductive for NASH therapy; this will have important clinical implications in NASH treatment.


Subject(s)
Intracellular Signaling Peptides and Proteins , Liver Neoplasms , Membrane Proteins , Non-alcoholic Fatty Liver Disease , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Animals , Carcinogenesis , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Liver Neoplasms/metabolism , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Phosphatidylcholines/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism
5.
JHEP Rep ; 3(4): 100315, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34345813

ABSTRACT

BACKGROUND & AIMS: Liver lobules are typically subdivided into 3 metabolic zones: zones 1, 2, and 3. However, the contribution of zonal differences in hepatocytes to liver regeneration, as well as to carcinogenic susceptibility, remains unclear. METHODS: We developed a new method for sustained genetic labelling of zone 3 hepatocytes and performed fate tracing to monitor these cells in multiple mouse liver tumour models. RESULTS: We first examined changes in the zonal distribution of the Wnt target gene Axin2 over time using Axin2-Cre ERT2 ;Rosa26-Lox-Stop-Lox-tdTomato mice (Axin2;tdTomato). We found that following tamoxifen administration at 3 weeks of age, approximately one-third of total hepatocytes that correspond to zone 3 were labelled in Axin2;tdTomato mice; the tdTomato+ cell distribution closely matched that of the zone 3 marker CYP2E1. Cell fate analysis revealed that zone 3 hepatocytes maintained their own lineage but rarely proliferated beyond their liver zonation during homoeostasis; this indicated that our protocol enabled persistent genetic labelling of zone 3 hepatocytes. Using this system, we found that zone 3 hepatocytes generally had high neoplastic potential, which was promoted by constitutive activation of Wnt/ß-catenin signalling in the pericentral area. However, the frequency of zone 3 hepatocyte-derived tumours varied depending on the regeneration pattern of the liver parenchyma in response to liver injury. Notably, Axin2-expressing hepatocytes undergoing chronic liver injury significantly contributed to liver regeneration and possessed high neoplastic potential. Additionally, we revealed that the metabolic phenotypes of liver tumours were acquired during tumorigenesis, irrespective of their spatial origin. CONCLUSIONS: Hepatocytes receiving Wnt/ß-catenin signalling from their microenvironment have high neoplastic potential, and Wnt/ß-catenin signalling is a potential drug target for the prevention of hepatocellular carcinoma. LAY SUMMARY: Lineage tracing revealed that zone 3 hepatocytes residing in the pericentral niche have high neoplastic potential. Under chronic liver injury, hepatocytes receiving Wnt/ß-catenin signalling broadly exist across all hepatic zones and significantly contribute to liver tumorigenesis as well as liver regeneration. Wnt/ß-catenin signalling is a potential drug target for the prevention of hepatocellular carcinoma.

6.
J Med Chem ; 64(9): 5689-5709, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33899473

ABSTRACT

Vitamin D3 metabolites inhibit the expression of lipogenic genes by impairing sterol regulatory element-binding protein (SREBP), a master transcription factor of lipogenesis, independent of their canonical activity through a vitamin D receptor (VDR). Herein, we designed and synthesized a series of vitamin D derivatives to search for a drug-like small molecule that suppresses the SREBP-induced lipogenesis without affecting the VDR-controlled calcium homeostasis in vivo. Evaluation of the derivatives in cultured cells and mice led to the discovery of VDR-silent SREBP inhibitors and to the development of KK-052 (50), the first vitamin D-based SREBP inhibitor that has been demonstrated to mitigate hepatic lipid accumulation without calcemic action in mice. KK-052 maintained the ability of 25-hydroxyvitamin D3 to induce the degradation of SREBP but lacked in the VDR-mediated activity. KK-052 serves as a valuable compound for interrogating SREBP/SCAP in vivo and may represent an unprecedented translational opportunity of synthetic vitamin D analogues.


Subject(s)
Drug Design , Sterol Regulatory Element Binding Proteins/metabolism , Vitamin D/analogs & derivatives , Animals , Body Weight/drug effects , CHO Cells , Cricetinae , Cricetulus , Cycloaddition Reaction , Disease Models, Animal , Drug Evaluation, Preclinical , Fatty Liver/drug therapy , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lipogenesis/drug effects , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Receptors, Calcitriol/antagonists & inhibitors , Receptors, Calcitriol/metabolism , Sterol Regulatory Element Binding Proteins/antagonists & inhibitors , Sterol Regulatory Element Binding Proteins/genetics , Vitamin D/metabolism , Vitamin D/pharmacology , Vitamin D/therapeutic use
7.
Gastroenterology ; 160(6): 2133-2148.e6, 2021 05.
Article in English | MEDLINE | ID: mdl-33465373

ABSTRACT

BACKGROUND & AIMS: Peribiliary glands (PBGs), clusters of epithelial cells residing in the submucosal compartment of extrahepatic bile ducts, have been suggested as biliary epithelial stem/progenitor cell niche; however, evidence to support this claim is limited because of a lack of PBG-specific markers. We therefore sought to identify PBG-specific markers to investigate the potential role of PBGs as stem/progenitor cell niches, as well as an origin of cancer. METHODS: We examined the expression pattern of the Wnt target gene Axin2 in extrahepatic bile ducts. We then applied lineage tracing to investigate whether Axin2-expressing cells from PBGs contribute to biliary regeneration and carcinogenesis using Axin2-CreERT mice. RESULTS: Wnt signaling activation, marked by Axin2, was limited to PBGs located in the periampullary region. Lineage tracing showed that Axin2-expressing periampullary PBG cells are capable of self-renewal and supplying new biliary epithelial cells (BECs) to the luminal surface. Additionally, the expression pattern of Axin2 and the mature ductal cell marker CK19 were mutually exclusive in periampullary region, and fate tracing of CK19+ luminal surface BECs showed gradual replacement by CK19- cells, further supporting the continuous replenishment of new BECs from PBGs to the luminal surface. We also found that Wnt signal enhancer R-spondin3 secreted from Myh11-expressing stromal cells, corresponding to human sphincter of Oddi, maintained the periampullary Wnt signal-activating niche. Notably, introduction of PTEN deletion into Axin2+ PBG cells, but not CK19+ luminal surface BECs, induced ampullary carcinoma whose development was suppressed by Wnt inhibitor. CONCLUSION: A specific cell population receiving Wnt-activating signal in periampullary PBGs functions as biliary epithelial stem/progenitor cells and also the cellular origin of ampullary carcinoma.


Subject(s)
Ampulla of Vater , Axin Protein/metabolism , Carcinoma/pathology , Common Bile Duct Neoplasms/pathology , Epithelial Cells/pathology , Stem Cells/pathology , Wnt Signaling Pathway , Ampulla of Vater/pathology , Animals , Axin Protein/genetics , Bile Ducts, Extrahepatic/metabolism , Bile Ducts, Extrahepatic/pathology , Carcinogenesis/genetics , Cell Lineage , Cell Proliferation , Epithelial Cells/metabolism , Keratin-19/metabolism , Mice , Mice, Inbred C57BL , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , PTEN Phosphohydrolase/genetics , Sphincter of Oddi/metabolism , Stem Cells/metabolism , Thrombospondins/genetics , Thrombospondins/metabolism
8.
Gut Liver ; 15(4): 616-624, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33361547

ABSTRACT

Background/Aims: Acute cholangitis (AC) is a potentially life-threatening bacterial infection, and timely antimicrobial treatment, faster than that achieved with bacterial cultures, is recommended. Although the current guidelines refer to empirical antimicrobial treatment, various kinds of antimicrobial agents have been cited because of insufficient analyses on the spectrum of pathogens in AC. Enterococcus spp. is one of the most frequently isolated Gram-positive bacteria from the bile of patients with AC, but its risk factors have not been extensively studied. This study aimed to analyze the risk factors of AC caused by Enterococcus faecalis and Enterococcus faecium. Methods: Patients with AC who were hospitalized in a Japanese tertiary center between 2010 and 2015 were retrospectively analyzed. Patients' first AC episodes in the hospital were evaluated. Results: A total of 266 patients with AC were identified. E. faecalis and/or E. faecium was isolated in 56 (21%) episodes of AC. Prior endoscopic sphincterotomy (EST), the presence of a biliary stent, prior cholecystectomy, and past intensive care unit admission were more frequently observed in AC patients with E. faecalis and/or E. faecium than in those without such bacteria. Prior EST was identified as an independent risk factor for AC caused by E. faecalis and/or E. faecium in the multivariate analysis. Conclusions: Given the intrinsic resistance of E. faecalis and E. faecium to antibiotics, clinicians should consider empirical therapy with anti-enterococcal antibiotics for patients with prior EST.


Subject(s)
Cholangitis , Enterococcus faecium , Gram-Positive Bacterial Infections , Anti-Bacterial Agents/therapeutic use , Enterococcus faecalis , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Humans , Microbial Sensitivity Tests , Retrospective Studies , Risk Factors
9.
Reprod Toxicol ; 99: 27-38, 2021 01.
Article in English | MEDLINE | ID: mdl-33249232

ABSTRACT

Rat developmental toxicity including embryolethality and teratogenicity (mainly ventricular septal defects and wavy ribs) were produced by S-53482, an N-phenylimide herbicide that inhibits protoporphyrinogen oxidase (PPO) common to chlorophyll and heme biosynthesis. The sequence of key biological events in the mode of action has been elucidated as follows: inhibition of PPO interferes with normal heme synthesis, which causes loss of blood cells leading to fetal anemia, embryolethality and the development of malformations. In this study we investigated whether the rat is a relevant model for the assessment of the human hazard of the herbicide. To study effects on heme biosynthesis, human erythroleukemia, human cord blood, and rat erythroleukemia cells were treated with the herbicide during red cell differentiation. Protoporphyrin IX, a marker of PPO inhibition, and heme were determined. We investigated whether synchronous maturation of primitive erythropoiesis, which can contribute to massive losses of embryonic blood, occurs in rats. The population of primitive erythroblasts was observed on gestational days 11 through 14. Heme production was suppressed in rat erythroid cells. In contrast, heme reduction was not seen in both human erythroid cells when PPO was inhibited. Rats underwent synchronous maturation in primitive erythropoiesis. Our results combined with epidemiological findings that patients with deficient PPO are not anemic led us to conclude that human erythroblasts are resistant to the herbicide. It is suggested that the rat would be an inappropriate model for assessing the developmental toxicity of S-53482 in humans as rats are specifically sensitive to PPO inhibition by the herbicide.


Subject(s)
Benzoxazines/toxicity , Erythroid Cells/drug effects , Heme/metabolism , Herbicides/toxicity , Phthalimides/toxicity , Protoporphyrinogen Oxidase/antagonists & inhibitors , Animals , Cell Line, Tumor , Erythroid Cells/metabolism , Female , Fetal Blood , Humans , Pregnancy , Protoporphyrins/metabolism , Rats, Sprague-Dawley , Species Specificity
10.
Gut Liver ; 14(6): 842-849, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32050314

ABSTRACT

Background/Aims: Empiric antibiotics are given in combination with biliary drainage for acute cholangitis but sometimes turn out to be insensitive to microorganisms in blood and bile. Clinical outcomes were compared according to sensitivity to microorganisms detected in blood and bile culture to evaluate the impact of sensitivity to empiric antibiotics in cholangitis. Methods: Consecutive patients who underwent biliary drainage for acute cholangitis were retrospectively studied. Clinical outcomes such as 30-day mortality, length of hospital stay and high care unit stay, organ dysfunction and duration of fever were compared in three groups: group A (sensitive to both blood and bile culture), group B (sensitive to blood culture alone) and group C (insensitive to both blood and bile culture). Results: Eighty episodes of cholangitis were classified according to sensitivity results: 42, 32 and six in groups A, B and C. Escherichia coli and Klebsiella were two major pathogens. There were no significant differences in 30-day mortality rate (7%, 0%, and 0%, p=0.244), length of hospital stay (28.5, 21.0, and 20.5 days, p=0.369), organ dysfunction rate (14%, 25%, and 17%, p=0.500), duration of fever (4.3, 3.2, and 3.5 days, p=0.921) and length of high care unit stay (1.4, 1.2, and 1.7 days, p=0.070) in groups A, B and C. Empiric antibiotics were changed in 11 episodes but clinical outcomes appeared to be non-inferior even in 31 episodes of cholangitis who were on inadequate antibiotics throughout the course. Conclusions: Sensitivity of empiric antibiotics was not associated with clinical outcomes in acute cholangitis.


Subject(s)
Cholangitis , Acute Disease , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Cholangiopancreatography, Endoscopic Retrograde , Cholangitis/therapy , Drainage , Female , Humans , Male , Retrospective Studies
11.
Toxicol Res ; 35(4): 343-351, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31636845

ABSTRACT

Many in vitro developmental toxicity assays have been proposed over several decades. Since the late 1980s, we have made intermittent attempts to introduce in vitro assays as screening tests for developmental toxicity of in-house candidate products. Two cell-based assays which were developed two decades apart were intensively studied. One was an assay of inhibitory effects on mouse ascites tumor cell attachment to a concanavalin A-coated plastic sheet surface (MOT assay), which we studied in the early days of assay development. The other was an assay of inhibitory effects on the differentiation of mouse embryonic stem cell to beating heart cells (EST assay), which we assessed more recently. We evaluated the suitability of the assays for screening in-house candidates. The concordance rates with in vivo developmental toxicity were at the 60% level. The EST assay classified chemicals that inhibited cell proliferation as embryo-toxic. Both assays had a significant false positive rate. The assays were generally considered unsuitable for screening the developmental toxicity of our candidate compounds. Recent test systems adopt advanced technologies. Despite such evolution of materials and methods, the concordance rates of the EST and MOT systems were similar. This may suggest that the fundamental predictivity of in vitro developmental toxicity assays has remained basically unchanged for decades. To improve their predictivity, in vitro developmental toxicity assays should be strictly based on elucidated pathogenetic mechanisms of developmental toxicity.

12.
Cancers (Basel) ; 10(11)2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30445800

ABSTRACT

Metabolic reprogramming for adaptation to the local environment has been recognized as a hallmark of cancer. Although alterations in fatty acid (FA) metabolism in cancer cells have received less attention compared to other metabolic alterations such as glucose or glutamine metabolism, recent studies have uncovered the importance of lipid metabolic reprogramming in carcinogenesis. Obesity and nonalcoholic steatohepatitis (NASH) are well-known risk factors of hepatocellular carcinoma (HCC), and individuals with these conditions exhibit an increased intake of dietary FAs accompanied by enhanced lipolysis of visceral adipose tissue due to insulin resistance, resulting in enormous exogenous FA supplies to hepatocytes via the portal vein and lymph vessels. This "lipid-rich condition" is highly characteristic of obesity- and NASH-driven HCC. Although the way in which HCC cells adapt to such a condition and exploit it to aid their progression is not understood, we recently obtained new insights into this mechanism through lipid metabolic reprogramming. In addition, accumulating evidence supports the importance of lipid metabolic reprogramming in various situations of hepatocarcinogenesis. Thus, in this review, we discuss the latest findings regarding the role of FA metabolism pathways in hepatocarcinogenesis, focusing on obesity- and NASH-driven lipid metabolic reprogramming.

13.
J Pestic Sci ; 43(2): 79-87, 2018 May 20.
Article in English | MEDLINE | ID: mdl-30363091

ABSTRACT

To clarify species differences in the developmental toxicity of procymidone (Sumilex®, a fungicide for agricultural use), placental transfer studies were conducted using 14C-labeled procymidone in pregnant rats, rabbits, and monkeys. These studies demonstrated that maternal-to-fetal transfer of the parent compound and its hydroxylated metabolite, which are both weak anti-androgenic agents, occurred more easily than that of other metabolites, with much higher absolute concentrations achieved in the fetal circulation of rats than of rabbits or monkeys. Notably, in rats, the fetal plasma concentration of the hydroxylated metabolite was higher than that of procymidone, especially after repeated oral administration of procymidone. These results suggest that the hydroxylated metabolite is the most relevant metabolite involved in teratogenic activity in rats.

14.
J Pestic Sci ; 43(2): 114-123, 2018 May 20.
Article in English | MEDLINE | ID: mdl-30363160

ABSTRACT

The agricultural fungicide procymidone can cause external genitalia abnormalities in rats but not monkeys or rabbits. To investigate the relevance of developmental findings in rats to humans, we conducted in vitro plasma protein binding studies, in vitro metabolism (biotransformation) studies using liver S9 fractions and hepatocytes, and in vivo metabolism and excretion studies using chimeric mice with humanized hepatocytes. On the basis of these results, we concluded that the metabolic and excretion profiles of procymidone in humans are similar to those in monkeys and rabbits but differ from those in rats. From the findings of this and previous studies, we judge the developmental toxicity potential of procymidone to be very low in humans.

15.
Int J Mol Sci ; 19(6)2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29895797

ABSTRACT

The identification of the cellular origin of cancer is important for our understanding of the mechanisms regulating carcinogenesis, thus the cellular origin of cholangiocarcinoma (CCA) is a current topic of interest. Although CCA has been considered to originate from biliary epithelial cells, recent studies have suggested that multiple cell types can develop into CCA. With regard to the hilar and extrahepatic bile ducts, peribiliary glands (PBGs), a potential stem cell niche of biliary epithelial cells, have attracted attention as the cellular origin of biliary tract cancer. Recent histopathological and experimental studies have suggested that some kinds of inflammation-induced CCA and intraductal papillary neoplasms of the bile duct are more likely to originate from PBGs. During inflammation-mediated cholangiocarcinogenesis, the biliary epithelial injury-induced regenerative response by PBGs is considered a key process. Thus, in this review, we discuss recent advances in our understanding of cholangiocarcinogenesis from the viewpoint of inflammation and the cellular origin of CCA, especially focusing on PBGs.


Subject(s)
Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Biliary Tract Neoplasms/pathology , Animals , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/metabolism , Biliary Tract Neoplasms/metabolism , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Humans , Interleukin-33/metabolism
16.
J Agric Food Chem ; 66(8): 1955-1963, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29313347

ABSTRACT

A metabolite of procymidone, hydroxylated-PCM, causes rat-specific developmental toxicity due to higher exposure to it in rats than in rabbits or monkeys. When procymidone was administered to chimeric mice with rat or human hepatocytes, the plasma level of hydroxylated-PCM was higher than that of procymidone in rat chimeric mice, and the metabolic profile of procymidone in intact rats was well reproduced in rat chimeric mice. In human chimeric mice, the plasma level of hydroxylated-PCM was less, resulting in a much lower exposure. The main excretion route of hydroxylated-PCM-glucuronide was bile (the point that hydroxylated-PCM enters the enterohepatic circulation) in rat chimeric mice, and urine in human chimeric mice. These data suggest that humans, in contrast to rats, extensively form the glucuronide and excrete it in urine, as do rabbits and monkeys. Overall, procymidone's potential for causing teratogenicity in humans must be low compared to that in rats.


Subject(s)
Bridged Bicyclo Compounds/blood , Bridged Bicyclo Compounds/urine , Chimera/growth & development , Fungicides, Industrial/blood , Fungicides, Industrial/urine , Animals , Bile/chemistry , Bridged Bicyclo Compounds/toxicity , Chimera/blood , Chimera/urine , Feces/chemistry , Female , Fungicides, Industrial/toxicity , Hepatocytes/chemistry , Hepatocytes/metabolism , Humans , Mice , Rabbits , Rats
17.
Toxicol Appl Pharmacol ; 339: 34-41, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29198728

ABSTRACT

Flumioxazin, an N-phenylimide herbicide, inhibits protoporphyrinogen oxidase (PPO), a key enzyme in heme biosynthesis in mammals, and causes rat-specific developmental toxicity. The mechanism has mainly been clarified, but no research has yet focused on the contribution of its metabolites. We therefore conducted in vivo metabolism studies in pregnant rats and rabbits, and found 6 major known metabolites in excreta. There was no major rat-specific metabolite. The most abundant component in rat fetuses was APF, followed by flumioxazin and 5 identified metabolites. The concentrations of flumioxazin and these metabolites in fetuses were lower in rabbits than in rats. In vitro PPO inhibition assays with rat and human liver mitochondria showed that flumioxazin is a more potent PPO inhibitor than the metabolites. There were no species differences in relative intensity of PPO inhibition among flumioxazin and these metabolites. Based on the results of these in vivo and in vitro experiments, we concluded that flumioxazin is the causal substance of the rat-specific developmental toxicity. As a more reliable test system for research on in vitro PPO inhibition, cell-based assays with rat, rabbit, monkey, and human hepatocytes were performed. The results were consistent with those of the mitochondrial assays, and rats were more sensitive to PPO inhibition by flumioxazin than humans, while rabbits and monkeys were almost insensitive. From these results, the species difference in the developmental toxicity was concluded to be due to the difference in sensitivity of PPO to flumioxazin, and rats were confirmed to be the most sensitive of these species.


Subject(s)
Benzoxazines/metabolism , Fetal Development/drug effects , Fetus/metabolism , Herbicides/metabolism , Phthalimides/metabolism , Protoporphyrinogen Oxidase/antagonists & inhibitors , Protoporphyrinogen Oxidase/metabolism , Animals , Benzoxazines/toxicity , Female , Fetal Development/physiology , Fetus/drug effects , Haplorhini , Hepatocytes/drug effects , Hepatocytes/metabolism , Herbicides/toxicity , Humans , Phthalimides/toxicity , Pregnancy , Rabbits , Rats , Rats, Sprague-Dawley , Rats, Wistar , Species Specificity
18.
J Toxicol Sci ; 42(6): 773-788, 2017.
Article in English | MEDLINE | ID: mdl-29142176

ABSTRACT

High dietary levels of the non-genotoxic synthetic pyrethroid momfluorothrin increased the incidence of hepatocellular tumors in male and female Wistar rats. Mechanistic studies have demonstrated that the mode of action (MOA) for momfluorothrin-induced hepatocellular tumors is constitutive androstane receptor (CAR)-mediated. In the present study, to evaluate the potential human carcinogenic risk of momfluorothrin, the effects of momfluorothrin (1-1,000 µM) and a major metabolite Z-CMCA (5-1,000 µM) on hepatocyte replicative DNA synthesis and CYP2B mRNA expression were examined in cultured rat and human hepatocyte preparations. The effect of sodium phenobarbital (NaPB), a prototypic rodent hepatocarcinogen with a CAR-mediated MOA, was also investigated. Human hepatocyte growth factor (hHGF) produced a concentration-dependent increase in replicative DNA synthesis in rat and human hepatocytes. However, while NaPB and momfluorothrin increased replicative DNA synthesis in rat hepatocytes, NaPB, momfluorothrin and Z-CMCA did not increase replicative DNA synthesis in human hepatocytes. NaPB, momfluorothrin and Z-CMCA increased CYP2B1/2 mRNA levels in rat hepatocytes. NaPB and momfluorothrin also increased CYP2B6 mRNA levels in human hepatocytes. Overall, while momfluorothrin and NaPB activated CAR in cultured human hepatocytes, neither chemical increased replicative DNA synthesis. Furthermore, to confirm whether the findings observed in vitro were also observed in vivo, a humanized chimeric mouse study was conducted. Replicative DNA synthesis was not increased in human hepatocytes of chimeric mice treated with momfluorothrin or its close structural analogue metofluthrin. As human hepatocytes are refractory to the mitogenic effects of momfluorothrin, in contrast to rat hepatocytes, the data support the hypothesis that the MOA for momfluorothrin-induced rat liver tumor formation is not relevant for humans.


Subject(s)
Androstanes , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic/genetics , Hepatocytes/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Pyrethrins/toxicity , Receptors, Androgen/physiology , Animals , Cells, Cultured , Cytochrome P-450 CYP2B1/genetics , Cytochrome P-450 CYP2B1/metabolism , DNA Replication/drug effects , Female , Hepatocyte Growth Factor/pharmacology , Hepatocytes/metabolism , Humans , Male , Mice , Phenobarbital/toxicity , RNA, Messenger/metabolism , Rats, Wistar
19.
Toxicol Sci ; 158(2): 412-430, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28520973

ABSTRACT

High dietary levels of momfluorothrin, a nongenotoxic synthetic pyrethroid, induced hepatocellular tumors in male and female Wistar rats in a 2-year bioassay. The mode of action (MOA) for rat hepatocellular tumors was postulated to occur via activation of the constitutive androstane receptor (CAR), as momfluorothrin is a close structural analogue of the pyrethroid metofluthrin, which is known to produce rat liver tumors through a CAR-mediated MOA. To elucidate the MOA for rat hepatocellular tumor formation by momfluorothrin, this study was conducted to examine effects on key and associative events of the CAR-mediated MOA for phenobarbital based on the International Programme on Chemical Safety framework. A 2-week in vivo study in Wistar rats revealed that momfluorothrin induced CYP2B activities, increased liver weights, produced hepatocyte hypertrophy and increased hepatocyte replicative DNA synthesis. These effects correlated with the dose-response relationship for liver tumor formation and also showed reversibility upon cessation of treatment. Moreover, momfluorothrin did not increase CYP2B1/2 mRNA expression and hepatocyte replicative DNA synthesis in CAR knockout rats. Using cultured Wistar rat hepatocytes and the RNA interference technique, knockdown of CAR resulted in a suppression of induction of CYP2B1/2 mRNA levels by momfluorothrin. Alternative MOAs for liver tumor formation were excluded. A global gene expression profile analysis of the liver of male Wistar rats treated with momfluorothrin for 2 weeks also showed similarity to the prototypic CAR activator phenobarbital. Overall, these data strongly support that the postulated MOA for momfluorothrin-induced rat hepatocellular tumors as being mediated by CAR activation.


Subject(s)
Liver Neoplasms, Experimental/chemically induced , Pyrethrins/toxicity , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Constitutive Androstane Receptor , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , DNA Replication/drug effects , Dose-Response Relationship, Drug , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/pathology , Liver Neoplasms, Experimental/metabolism , Male , Microsomes, Liver/enzymology , Mitogens/pharmacology , Mitosis/drug effects , Organ Size/drug effects , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Receptors, Cytoplasmic and Nuclear/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...