Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(12): 8310-8323, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37307526

ABSTRACT

WDR5 is a critical chromatin cofactor of MYC. WDR5 interacts with MYC through the WBM pocket and is hypothesized to anchor MYC to chromatin through its WIN site. Blocking the interaction of WDR5 and MYC impairs the recruitment of MYC to its target genes and disrupts the oncogenic function of MYC in cancer development, thus providing a promising strategy for the treatment of MYC-dysregulated cancers. Here, we describe the discovery of novel WDR5 WBM pocket antagonists containing a 1-phenyl dihydropyridazinone 3-carboxamide core that was identified from high-throughput screening and subsequent structure-based design. The leading compounds showed sub-micromolar inhibition in the biochemical assay. Among them, compound 12 can disrupt WDR5-MYC interaction in cells and reduce MYC target gene expression. Our work provides useful probes to study WDR5-MYC interaction and its function in cancers, which can also be used as the starting point for further optimization toward drug-like small molecules.


Subject(s)
Neoplasms , WD40 Repeats , Humans , Genes, myc , Chromatin , Neoplasms/genetics , High-Throughput Screening Assays , Intracellular Signaling Peptides and Proteins/metabolism
2.
Bioorg Med Chem Lett ; 91: 129352, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37270074

ABSTRACT

Spleen tyrosine kinase (SYK) is a non-receptor cytoplasmic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signalling, inhibition of SYK has been a target of interest in a variety of diseases. Herein, we report the use of structure-based drug design to discover a series of potent macrocyclic inhibitors of SYK, with excellent kinome selectivity and in vitro metabolic stability. We were able to remove hERG inhibition through the optimization of physical properties, and utilized a pro-drug strategy to address permeability challenges.


Subject(s)
Protein-Tyrosine Kinases , Signal Transduction , Syk Kinase , Protein Kinase Inhibitors/pharmacology
3.
J Med Chem ; 64(23): 17146-17183, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34807608

ABSTRACT

Aberrant activity of the histone methyltransferase polycomb repressive complex 2 (PRC2) has been linked to several cancers, with small-molecule inhibitors of the catalytic subunit of the PRC2 enhancer of zeste homologue 2 (EZH2) being recently approved for the treatment of epithelioid sarcoma (ES) and follicular lymphoma (FL). Compounds binding to the EED subunit of PRC2 have recently emerged as allosteric inhibitors of PRC2 methyltransferase activity. In contrast to orthosteric inhibitors that target EZH2, small molecules that bind to EED retain their efficacy in EZH2 inhibitor-resistant cell lines. In this paper we disclose the discovery of potent and orally bioavailable EED ligands with good solubilities. The solubility of the EED ligands was optimized through a variety of design tactics, with the resulting compounds exhibiting in vivo efficacy in EZH2-driven tumors.


Subject(s)
Enzyme Inhibitors/pharmacology , Polycomb Repressive Complex 2/antagonists & inhibitors , Allosteric Regulation , Animals , Catalytic Domain , Cell Line , Cell Proliferation/drug effects , Enhancer of Zeste Homolog 2 Protein/chemistry , Enhancer of Zeste Homolog 2 Protein/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Heterocyclic Compounds/chemistry , Humans , Ligands , Polycomb Repressive Complex 2/chemistry , Rats , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 39: 127904, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33684441

ABSTRACT

Free Energy Perturbation (FEP) calculations can provide high-confidence predictions of the interaction strength between a ligand and its protein target. We sought to explore a series of triazolopyrimidines which bind to the EED subunit of the PRC2 complex as potential anticancer therapeutics, using FEP calculations to inform compound design. Combining FEP predictions with a late-stage functionalisation (LSF) inspired synthetic approach allowed us to rapidly evaluate structural modifications in a previously unexplored region of the EED binding site. This approach generated a series of novel triazolopyrimidine EED ligands with improved physicochemical properties and which inhibit PRC2 methyltransferase activity in a cancer-relevant G401 cell line.


Subject(s)
Drug Design , Enzyme Inhibitors/pharmacology , Polycomb Repressive Complex 2/antagonists & inhibitors , Purines/pharmacology , Thermodynamics , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Ligands , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Polycomb Repressive Complex 2/metabolism , Purines/chemical synthesis , Purines/chemistry , Quantum Theory , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 30(22): 127523, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32877741

ABSTRACT

Hybridisation of amino-pyrimidine based SYK inhibitors (e.g. 1a) with previously reported diamine-based SYK inhibitors (e.g. TAK-659) led to the identification and optimisation of a novel pyrimidine-based series of potent and selective SYK inhibitors, where the original aminomethylene group was replaced by a 3,4-diaminotetrahydropyran group. The initial compound 5 achieved excellent SYK potency. However, it suffered from poor permeability and modest kinase selectivity. Further modifications of the 3,4-diaminotetrahydropyran group were identified and the interactions of those groups with Asp512 were characterised by protein X-ray crystallography. Further optimisation of this series saw mixed results where permeability and kinase selectivity were increased and oral bioavailability was achieved in the series, but at the expense of potent hERG inhibition.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Syk Kinase/antagonists & inhibitors , Animals , Dogs , Dose-Response Relationship, Drug , Humans , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Rats, Wistar , Structure-Activity Relationship , Syk Kinase/metabolism
6.
Bioorg Med Chem Lett ; 30(18): 127393, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32721854

ABSTRACT

Spleen Tyrosine Kinase (SYK) is a well-studied enzyme with therapeutic applications in oncology and autoimmune diseases. We identified an azabenzimidazole (ABI) series of SYK inhibitors by mining activity data of 86,000 compounds from legacy biochemical assays with SYK and other homologous kinases as target enzymes. A structure-based design and hybridization approach was then used to improve the potency and kinase selectivity of the hits. Lead compound 23 from this novel ABI series has a SYK IC50 = 0.21 nM in a biochemical assay and inhibits growth of SUDHL-4 cells at a GI50 = 210 nM.


Subject(s)
Autoimmune Diseases/drug therapy , Aza Compounds/chemistry , Benzimidazoles/chemistry , Protein Kinase Inhibitors/chemistry , Syk Kinase/antagonists & inhibitors , Amino Acid Sequence , Aza Compounds/pharmacology , Benzimidazoles/pharmacology , Cell Line , Cell Proliferation/drug effects , Drug Design , Humans , Inhibitory Concentration 50 , Models, Molecular , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Substrate Specificity
7.
Bioorg Med Chem Lett ; 30(19): 127433, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32717371

ABSTRACT

Spleen tyrosine kinase (SYK) is a non-receptor cytosolic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signaling, inhibition of SYK has been targeted in a variety of disease areas. Herein, we report the optimization of a series of potent and selective SYK inhibitors, focusing on improving metabolic stability, pharmacokinetics and hERG inhibition. As a result, we identified 30, which exhibited no hERG activity but unfortunately was poorly absorbed in rats and mice. We also identified a SYK chemical probe, 17, which exhibits excellent potency at SYK, and an adequate rodent PK profile to support in vivo efficacy/PD studies.


Subject(s)
Indazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Syk Kinase/antagonists & inhibitors , Animals , Binding Sites , Caco-2 Cells , Crystallography, X-Ray , ERG1 Potassium Channel/antagonists & inhibitors , Humans , Indazoles/chemical synthesis , Indazoles/metabolism , Indazoles/pharmacokinetics , Mice , Microsomes, Liver/metabolism , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship , Syk Kinase/chemistry , Syk Kinase/metabolism
8.
J Med Chem ; 63(9): 4517-4527, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32297743

ABSTRACT

JAK1, JAK2, JAK3, and TYK2 belong to the JAK (Janus kinase) family. They play critical roles in cytokine signaling. Constitutive activation of JAK/STAT pathways is associated with a wide variety of diseases. Particularly, pSTAT3 is observed in response to the treatment with inhibitors of oncogenic signaling pathways such as EGFR, MAPK, and AKT and is associated with resistance or poorer response to agents targeting these pathways. Among the JAK family kinases, JAK1 has been shown to be the primary driver of STAT3 phosphorylation and signaling; therefore, selective JAK1 inhibition can be a viable means to overcome such treatment resistances. Herein, an account of the medicinal chemistry optimization from the promiscuous kinase screening hit 3 to the candidate drug 21 (AZD4205), a highly selective JAK1 kinase inhibitor, is reported. Compound 21 has good preclinical pharmacokinetics. Compound 21 displayed an enhanced antitumor activity in combination with an approved EGFR inhibitor, osimertinib, in a preclinical non-small-cell lung cancer (NSCLC) xenograft NCI-H1975 model.


Subject(s)
Indoles/therapeutic use , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Animals , Cell Line, Tumor , Drug Design , Drug Discovery , Drug Screening Assays, Antitumor , Drug Synergism , ErbB Receptors/antagonists & inhibitors , Female , Humans , Indoles/chemical synthesis , Indoles/pharmacokinetics , Mice, Nude , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
Cell Chem Biol ; 27(1): 41-46.e17, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31786184

ABSTRACT

Deregulation of the PRC2 complex, comprised of the core subunits EZH2, SUZ12, and EED, drives aberrant hypermethylation of H3K27 and tumorigenicity of many cancers. Although inhibitors of EZH2 have shown promising clinical activity, preclinical data suggest that resistance can be acquired through secondary mutations in EZH2 that abrogate drug target engagement. To address these limitations, we have designed several hetero-bifunctional PROTACs (proteolysis-targeting chimera) to efficiently target EED for elimination. Our PROTACs bind to EED (pKD ∼ 9.0) and promote ternary complex formation with the E3 ubiquitin ligase. The PROTACs potently inhibit PRC2 enzyme activity (pIC50 ∼ 8.1) and induce rapid degradation of not only EED but also EZH2 and SUZ12 within the PRC2 complex. Furthermore, the PROTACs selectively inhibit proliferation of PRC2-dependent cancer cells (half maximal growth inhibition [GI50] = 49-58 nM). In summary, our data demonstrate a therapeutic modality to target PRC2-dependent cancer through a PROTAC-mediated degradation mechanism.


Subject(s)
Polycomb Repressive Complex 2/metabolism , Proteolysis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Polycomb Repressive Complex 2/antagonists & inhibitors , Structure-Activity Relationship
10.
ACS Chem Biol ; 14(10): 2134-2140, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31525019

ABSTRACT

Enhancer of zeste homologue 2 (EZH2), the catalytic subunit of polycomb repressive complex 2 (PRC2), regulates chromatin state and gene expression by methylating histone H3 lysine 27. EZH2 is overexpressed or mutated in various hematological malignancies and solid cancers. Our previous efforts to identify inhibitors of PRC2 methyltransferase activity by high-throughput screening (HTS) resulted in large numbers of false positives and thus a significant hit deconvolution challenge. More recently, others have reported compounds that bind to another PRC2 core subunit, EED, and allosterically inhibit EZH2 activity. This mechanism is particularly appealing as it appears to retain potency in cell lines that have acquired resistance to orthosteric EZH2 inhibition. By designing a fluorescence polarization probe based on the reported EED binding compounds, we were able to quickly and cleanly re-triage our previously challenging HTS hit list and identify novel allosteric PRC2 inhibitors.


Subject(s)
Benzofurans/chemistry , Enzyme Inhibitors/chemistry , Polycomb Repressive Complex 2/antagonists & inhibitors , Small Molecule Libraries/chemistry , Allosteric Regulation/drug effects , Benzofurans/metabolism , Carbocyanines/chemistry , Cell Line, Tumor , Enzyme Inhibitors/metabolism , Fluorescent Dyes/chemistry , High-Throughput Screening Assays , Humans , Ligands , Polycomb Repressive Complex 2/isolation & purification , Polycomb Repressive Complex 2/metabolism , Protein Binding , Small Molecule Libraries/metabolism
11.
Bioorg Med Chem Lett ; 26(1): 60-7, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26614408

ABSTRACT

We have identified a class of azabenzimidazoles as potent and selective JAK1 inhibitors. Investigations into the SAR are presented along with the structural features required to achieve selectivity for JAK1 versus other JAK family members. An example from the series demonstrated highly selective inhibition of JAK1 versus JAK2 and JAK3, along with inhibition of pSTAT3 in vivo, enabling it to serve as a JAK1 selective tool compound to further probe the biology of JAK1 selective inhibitors.


Subject(s)
Imidazoles/pharmacology , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Animals , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Janus Kinase 1/metabolism , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , STAT3 Transcription Factor/metabolism , Structure-Activity Relationship
12.
J Med Chem ; 57(11): 4584-97, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24828090

ABSTRACT

Thymidylate kinase (TMK), an essential enzyme in bacterial DNA biosynthesis, is an attractive therapeutic target for the development of novel antibacterial agents, and we continue to explore TMK inhibitors with improved potency, protein binding, and pharmacokinetic potential. A structure-guided design approach was employed to exploit a previously unexplored region in Staphylococcus aureus TMK via novel interactions. These efforts produced compound 39, with 3 nM IC50 against S. aureus TMK and 2 µg/mL MIC against methicillin-resistant S. aureus (MRSA). This compound exhibits a striking inverted chiral preference for binding relative to earlier compounds and also has improved physical properties and pharmacokinetics over previously published compounds. An example of this new series was efficacious in a murine S. aureus infection model, suggesting that compounds like 39 are options for further work toward a new Gram-positive antibiotic by maintaining a balance of microbiological potency, low clearance, and low protein binding that can result in lower efficacious doses.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Gram-Positive Bacteria/drug effects , Nucleoside-Phosphate Kinase/antagonists & inhibitors , Piperidines/chemical synthesis , Pyrimidinones/chemical synthesis , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Resistance, Bacterial , Gram-Positive Bacteria/enzymology , Hydrophobic and Hydrophilic Interactions , Mice , Microbial Sensitivity Tests , Models, Molecular , Piperidines/chemistry , Piperidines/pharmacology , Protein Conformation , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Stereoisomerism , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 23(1): 169-73, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23206863

ABSTRACT

Thymidylate kinase (TMK) is an essential enzyme for DNA synthesis in bacteria, phosphorylating deoxythymidine monophosphate (dTMP) to deoxythymidine diphosphate (dTDP), and thus is a potential new antibacterial drug target. Previously, we have described the first potent and selective inhibitors of Gram-positive TMK, leading to in vivo validation of the target. Here, a structure-guided design approach based on the initial series led to the discovery of novel sulfonylpiperidine inhibitors of TMK. Formation of hydrogen bonds with Arg48 in Staphylococcus aureus TMK was key to obtaining excellent enzyme affinity, as verified by protein crystallography. Replacement of a methylene linker in the series by a sulfonamide was accomplished with retention of binding conformation. Further optimization of logD yielded phenol derivative 11, a potent inhibitor of TMK showing excellent MICs against a broad spectrum of Gram-positive bacteria and >10(5) selectivity versus the human TMK homologue.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Nucleoside-Phosphate Kinase/antagonists & inhibitors , Piperidines/chemistry , Staphylococcus aureus/enzymology , Sulfonamides/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Nucleoside-Phosphate Kinase/metabolism , Piperidines/chemical synthesis , Piperidines/pharmacology , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology
14.
J Med Chem ; 55(22): 10010-21, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23043329

ABSTRACT

Thymidylate kinase (TMK) is an essential enzyme in bacterial DNA synthesis. The deoxythymidine monophosphate (dTMP) substrate binding pocket was targeted in a rational-design, structure-supported effort, yielding a unique series of antibacterial agents showing a novel, induced-fit binding mode. Lead optimization, aided by X-ray crystallography, led to picomolar inhibitors of both Streptococcus pneumoniae and Staphylococcus aureus TMK. MICs < 1 µg/mL were achieved against methicillin-resistant S. aureus (MRSA), S. pneumoniae, and vancomycin-resistant Enterococcus (VRE). Log D adjustments yielded single diastereomers 14 (TK-666) and 46, showing a broad antibacterial spectrum against Gram-positive bacteria and excellent selectivity against the human thymidylate kinase ortholog.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzoates/pharmacology , Enterococcus/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Nucleoside-Phosphate Kinase/antagonists & inhibitors , Staphylococcus aureus/drug effects , Streptococcus pneumoniae/drug effects , Thymine/analogs & derivatives , Vancomycin Resistance/drug effects , Anti-Bacterial Agents/chemical synthesis , Benzoates/chemical synthesis , Catalytic Domain , Crystallography, X-Ray , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Nucleoside-Phosphate Kinase/metabolism , Structure-Activity Relationship , Thymine/chemical synthesis , Thymine/pharmacology
15.
J Comput Aided Mol Des ; 26(8): 921-34, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22869295

ABSTRACT

An NMR fragment screening dataset with known binders and decoys was used to evaluate the ability of docking and re-scoring methods to identify fragment binders. Re-scoring docked poses using the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) implicit solvent model identifies additional active fragments relative to either docking or random fragment screening alone. Early enrichment, which is clearly most important in practice for selecting relatively small sets of compounds for experimental testing, is improved by MM-PBSA re-scoring. In addition, the value in MM-PBSA re-scoring of docked poses for virtual screening may be in lessening the effect of the variation in the protein complex structure used.


Subject(s)
Computer Simulation , Drug Design , Intramolecular Oxidoreductases/chemistry , Lipocalins/chemistry , Proteins/chemistry , Algorithms , Binding Sites , Humans , Ligands , Molecular Conformation , Molecular Docking Simulation , Protein Binding , Small Molecule Libraries/chemistry
16.
ACS Chem Biol ; 7(11): 1866-72, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-22908966

ABSTRACT

There is an urgent need for new antibacterials that pinpoint novel targets and thereby avoid existing resistance mechanisms. We have created novel synthetic antibacterials through structure-based drug design that specifically target bacterial thymidylate kinase (TMK), a nucleotide kinase essential in the DNA synthesis pathway. A high-resolution structure shows compound TK-666 binding partly in the thymidine monophosphate substrate site, but also forming new induced-fit interactions that give picomolar affinity. TK-666 has potent, broad-spectrum Gram-positive microbiological activity (including activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus), bactericidal action with rapid killing kinetics, excellent target selectivity over the human ortholog, and low resistance rates. We demonstrate in vivo efficacy against S. aureus in a murine infected-thigh model. This work presents the first validation of TMK as a compelling antibacterial target and provides a rationale for pursuing novel clinical candidates for treating Gram-positive infections through TMK.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/enzymology , Nucleoside-Phosphate Kinase/antagonists & inhibitors , Enterococcus/drug effects , Enterococcus/enzymology , Gram-Positive Bacterial Infections/drug therapy , Humans , Models, Molecular , Nucleoside-Phosphate Kinase/metabolism , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology
17.
Bioorg Med Chem Lett ; 22(4): 1510-9, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22297115

ABSTRACT

A novel arylsulfonamide-containing series of compounds represented by 1, discovered by highthroughput screening, inhibit the acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). X-ray structure determination confirmed that inhibitor binds at the site occupied by acetyl-CoA, indicating that series is competitive with this substrate. This letter documents our early hit-to-lead evaluation of the chemical series and some of the findings that led to improvement in in-vitro potency against Gram-negative and Gram-positive bacterial isozymes, exemplified by compound 40.


Subject(s)
Catalytic Domain/drug effects , Enzyme Inhibitors/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Sulfonamides/pharmacology , Acetylglucosamine/analogs & derivatives , Acetylglucosamine/chemistry , Acetylglucosamine/pharmacology , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Binding, Competitive , Crystallography, X-Ray , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Inhibitory Concentration 50 , Models, Molecular , Molecular Sequence Data , Molecular Structure , Nucleotidyltransferases/chemistry , Sequence Alignment , Sulfonamides/chemistry
18.
Exp Biol Med (Maywood) ; 236(7): 844-50, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21697335

ABSTRACT

Understanding the structural mechanism of receptor-ligand interactions for the chemokine receptor CXCR4 is essential for determining its physiological and pathological functions and for developing new therapies targeted to CXCR4. We have recently reported a structural mechanism for CXCR4 antagonism by a novel synthetic CXCR4 antagonist RCP168 and compared its effectiveness against the natural agonist SDF-1α. In the present study, using molecular docking, we further investigate the binding modes of another seven small molecules known to act as CXCR4 antagonists. The predicted binding modes were compared with previously published mutagenesis data for two of these (AMD3100 and AMD11070). Four antagonists, including AMD3100, AMD11070, FC131 and KRH-1636, bound in a similar fashion to CXCR4. Two important acidic amino acid residues (Asp262 and Glu288) on CXCR4, previously found essential for AMD3100 binding, were also involved in binding of the other ligands. These four antagonists use a binding site in common with that used by RCP168, which is a novel synthetic derivative of vMIP-II in which the first 10 residues are replaced by D-amino acids. Comparison of binding modes suggested that this binding site is different from the binding region occupied by the N-terminus of SDF-1α, the only known natural ligand of CXCR4. These observations suggest the presence of a ligand-binding site (site A) that co-exists with the agonist (SDF-1α) binding site (site B). The other three antagonists, including MSX123, MSX202 and WZ811, are smaller in size and had very similar binding poses, but binding was quite different from that of AMD3100. These three antagonists bound at both sites A and B, thereby blocking both binding and signaling by SDF-1α.


Subject(s)
Anti-HIV Agents/chemistry , Anti-HIV Agents/metabolism , Immunologic Factors/chemistry , Immunologic Factors/metabolism , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/chemistry , Amino Acid Sequence , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Binding , Receptors, CXCR4/metabolism
19.
J Comput Aided Mol Des ; 23(8): 527-39, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19495993

ABSTRACT

Fragment-based drug discovery approaches allow for a greater coverage of chemical space and generally produce high efficiency ligands. As such, virtual and experimental fragment screening are increasingly being coupled in an effort to identify new leads for specific therapeutic targets. Fragment docking is employed to create target-focussed subset of compounds for testing along side generic fragment libraries. The utility of the program Glide with various scoring schemes for fragment docking is discussed. Fragment docking results for two test cases, prostaglandin D2 synthase and DNA ligase, are presented and compared to experimental screening data. Self-docking, cross-docking, and enrichment studies are performed. For the enrichment runs, experimental data exists indicating that the docking decoys in fact do not inhibit the corresponding enzyme being examined. Results indicate that even for difficult test cases fragment docking can yield enrichments significantly better than random.


Subject(s)
DNA Ligases/chemistry , Drug Discovery , Intramolecular Oxidoreductases/chemistry , Ligands , Lipocalins/chemistry , Small Molecule Libraries/chemistry , Software , Binding Sites , Computer-Aided Design , DNA Ligases/antagonists & inhibitors , Humans , Intramolecular Oxidoreductases/antagonists & inhibitors , Lipocalins/antagonists & inhibitors , Protein Binding , Protein Conformation , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship
20.
J Virol ; 81(20): 11489-98, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17686848

ABSTRACT

Chemokines and their receptors play important roles in normal physiological functions and the pathogeneses of a wide range of human diseases, including the entry of human immunodeficiency virus type 1 (HIV-1). However, the use of natural chemokines to probe receptor biology or to develop therapeutic drugs is limited by their lack of selectivity and the poor understanding of mechanisms in ligand-receptor recognition. We addressed these issues by combining chemical and structural biology in research into molecular recognition and inhibitor design. Specifically, the concepts of chemical biology were used to develop synthetically and modularly modified (SMM) chemokines that are unnatural and yet have properties improved over those of natural chemokines in terms of receptor selectivity, affinity, and the ability to explore receptor functions. This was followed by using structural biology to determine the structural basis for synthetically perturbed ligand-receptor selectivity. As a proof-of-principle for this combined chemical and structural-biology approach, we report a novel D-amino acid-containing SMM-chemokine designed based on the natural chemokine called viral macrophage inflammatory protein II (vMIP-II). The incorporation of unnatural D-amino acids enhanced the affinity of this molecule for CXCR4 but significantly diminished that for CCR5 or CCR2, thus yielding much more selective recognition of CXCR4 than wild-type vMIP-II. This D-amino acid-containing chemokine also showed more potent and specific inhibitory activity against HIV-1 entry via CXCR4 than natural chemokines. Furthermore, the high-resolution crystal structure of this D-amino acid-containing chemokine and a molecular-modeling study of its complex with CXCR4 provided the structure-based mechanism for the selective interaction between the ligand and chemokine receptors and the potent anti-HIV activity of D-amino acid-containing chemokines.


Subject(s)
Anti-HIV Agents/chemistry , Chemokines/chemistry , HIV , Amino Acids , Chemokines/pharmacology , Crystallization , Humans , Molecular Structure , Receptors, CXCR4/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...