Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Nat Commun ; 15(1): 269, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191550

ABSTRACT

Medulloblastomas with extensive nodularity are cerebellar tumors characterized by two distinct compartments and variable disease progression. The mechanisms governing the balance between proliferation and differentiation in MBEN remain poorly understood. Here, we employ a multi-modal single cell transcriptome analysis to dissect this process. In the internodular compartment, we identify proliferating cerebellar granular neuronal precursor-like malignant cells, along with stromal, vascular, and immune cells. In contrast, the nodular compartment comprises postmitotic, neuronally differentiated malignant cells. Both compartments are connected through an intermediate cell stage resembling actively migrating CGNPs. Notably, we also discover astrocytic-like malignant cells, found in proximity to migrating and differentiated cells at the transition zone between the two compartments. Our study sheds light on the spatial tissue organization and its link to the developmental trajectory, resulting in a more benign tumor phenotype. This integrative approach holds promise to explore intercompartmental interactions in other cancers with varying histology.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Medulloblastoma/genetics , Cell Differentiation , Cerebellar Neoplasms/genetics , Disease Progression , Histological Techniques
2.
Jpn J Clin Oncol ; 53(11): 1027-1033, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37534529

ABSTRACT

BACKGROUND: The neurological status of glioblastoma patients rapidly deteriorates. We recently demonstrated that early diagnosis and surgery within 3 weeks from the initial symptoms are associated with improved survival. While glioblastoma is a semi-urgent disease, the prehospital behaviors and clinical outcomes of glioblastoma patients are poorly understood. We aimed to disclose how prehospital patient behavior influences the clinical outcomes of glioblastoma patients. METHODS: Isocitrate dehydrogenase-wildtype glioblastoma patients treated at our institution between January 2010 and December 2019 were reviewed. Patients were divided into two groups, neurosurgeon and non-neurosurgeon groups, based on the primary doctor whom patients sought for an initial evaluation. Patient demographics and prognoses were examined. RESULTS: Of 170 patients, 109 and 61 were classified into the neurosurgeon and non-neurosurgeon groups, respectively. The median age of neurosurgeon group was significantly younger than the non-neurosurgeon group (61 vs. 69 years old, P = 0.019) and in better performance status (preoperative Karnofsky performance status scores $\ge$80: 72.5 vs. 55.7%, P = 0.027). The neurosurgeon group exhibited a significantly shorter duration from the first hospital visit to the first surgery than the non-neurosurgeon group (18 vs. 29 days, P < 0.0001). Furthermore, the overall survival of the neurosurgeon group was significantly more prolonged than that of the non-neurosurgeon group (22.9 vs. 14.0 months, P = 0.038). CONCLUSION: Seeking an initial evaluation by a neurosurgeon was potentially associated with prolonged survival in glioblastoma patients. A short duration from the first hospital visit to the first surgery is essential in enhancing glioblastoma patient prognosis.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Aged , Glioblastoma/surgery , Glioblastoma/drug therapy , Neurosurgeons , Brain Neoplasms/surgery , Brain Neoplasms/drug therapy , Retrospective Studies , Prognosis
3.
Neuro Oncol ; 25(10): 1895-1909, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37534924

ABSTRACT

BACKGROUND: Distinguishing the cellular origins of childhood brain tumors is key for understanding tumor initiation and identifying lineage-restricted, tumor-specific therapeutic targets. Previous strategies to map the cell-of-origin typically involved comparing human tumors to murine embryonal tissues, which is potentially limited due to species-specific differences. The aim of this study was to unravel the cellular origins of the 3 most common pediatric brain tumors, ependymoma, pilocytic astrocytoma, and medulloblastoma, using a developing human cerebellar atlas. METHODS: We used a single-nucleus atlas of the normal developing human cerebellum consisting of 176 645 cells as a reference for an in-depth comparison to 4416 bulk and single-cell transcriptome tumor datasets, using gene set variation analysis, correlation, and single-cell matching techniques. RESULTS: We find that the astroglial cerebellar lineage is potentially the origin for posterior fossa ependymomas. We propose that infratentorial pilocytic astrocytomas originate from the oligodendrocyte lineage and MHC II genes are specifically enriched in these tumors. We confirm that SHH and Group 3/4 medulloblastomas originate from the granule cell and unipolar brush cell lineages. Radiation-induced gliomas stem from cerebellar glial lineages and demonstrate distinct origins from the primary medulloblastoma. We identify tumor genes that are expressed in the cerebellar lineage of origin, and genes that are tumor specific; both gene sets represent promising therapeutic targets for future study. CONCLUSION: Based on our results, individual cells within a tumor may resemble different cell types along a restricted developmental lineage. Therefore, we suggest that tumors can arise from multiple cellular states along the cerebellar "lineage of origin."


Subject(s)
Astrocytoma , Brain Neoplasms , Cerebellar Neoplasms , Ependymoma , Glioma , Medulloblastoma , Child , Humans , Animals , Mice , Medulloblastoma/genetics , Medulloblastoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/pathology , Astrocytoma/genetics , Ependymoma/genetics , Ependymoma/pathology , Cerebellum/pathology , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology
4.
bioRxiv ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461511

ABSTRACT

Glioblastoma (GBM) represents the most aggressive subtype of glioma, noted for its profound invasiveness and molecular heterogeneity. The mesenchymal (MES) transcriptomic subtype is frequently associated with therapy resistance, rapid recurrence, and increased tumor-associated macrophages. Notably, activation of the NF-κB pathway and alterations in the PTEN gene are both associated with this malignant transition. Although PTEN aberrations have been shown to be associated with enhanced NF-κB signaling, the relationships between PTEN, NF-κB and MES transition are poorly understood in GBM. Here, we show that PTEN regulates the chromatin binding of bromodomain and extraterminal (BET) family proteins, BRD2 and BRD4, mediated by p65/RelA localization to the chromatin. By utilizing patient-derived glioblastoma stem cells and CRISPR gene editing of the RELA gene, we demonstrate a crucial role for RelA lysine 310 acetylation in recruiting BET proteins to chromatin for MES gene expression and GBM cell invasion upon PTEN loss. Remarkably, we found that BRD2 is dependent on chromatin associated acetylated RelA for its recruitment to MES gene promoters and their expression. Furthermore, loss of BRD2 results in the loss of MES signature, accompanied by an enrichment of proneural signature and enhanced therapy responsiveness. Finally, we demonstrate that disrupting the NFκB/BRD2 interaction with a brain penetrant BET-BD2 inhibitor reduces mesenchymal gene expression, GBM invasion, and therapy resistance in GBM models. This study uncovers the role of hitherto unexplored PTEN-NF-κB-BRD2 pathway in promoting MES transition and suggests inhibiting this complex with BET-BD2 specific inhibitors as a therapeutic approach to target the MES phenotype in GBM.

5.
Polymers (Basel) ; 15(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050422

ABSTRACT

Medulloblastoma is a life-threatening disease with poor therapeutic outcomes. In chemotherapy, low drug accumulation has been a cause of these outcomes. Such inadequate response to treatments has been associated with low drug accumulation, particularly with a limited cellular uptake of drugs. Recently, the conjugation of drugs to ligand molecules with high affinity to tumor cells has attracted much attention for enhancing drug internalization into target cells. Moreover, combining tumor-targeting ligands with nano-scaled drug carriers can potentially improve drug loading capacity and the versatility of the delivery. Herein, we focused on the possibility of targeting CD276/B7-H3, which is highly expressed on the medulloblastoma cell membrane, as a strategy for enhancing the cellular uptake of ligand-installed nanocarriers. Thus, anti-CD276 antibodies were conjugated on the surface of model nanocarriers based on polyion complex micelles (PIC/m) via click chemistry. The results showed that the anti-CD276 antibody-installed PIC/m improved intracellular delivery into CD276-expressing medulloblastoma cells in a CD276-dependent manner. Moreover, increasing the number of antibodies on the surface of micelles improved the cellular uptake efficiency. These observations indicate the potential of anti-CD276 antibody-installed nanocarriers for promoting drug delivery in medulloblastoma.

6.
bioRxiv ; 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36865329

ABSTRACT

Diffuse midline glioma (DMG) is a leading cause of brain tumor death in children. In addition to hallmark H3.3K27M mutations, significant subsets also harbor alterations of other genes, such as TP53 and PDGFRA. Despite the prevalence of H3.3K27M, the results of clinical trials in DMG have been mixed, possibly due to the lack of models recapitulating its genetic heterogeneity. To address this gap, we developed human iPSC-derived tumor models harboring TP53R248Q with or without heterozygous H3.3K27M and/or PDGFRAD842V overexpression. The combination of H3.3K27M and PDGFRAD842V resulted in more proliferative tumors when gene-edited neural progenitor (NP) cells were implanted into mouse brains compared to NP with either mutation alone. Transcriptomic comparison of tumors and their NP cells of origin identified conserved JAK/STAT pathway activation across genotypes as characteristic of malignant transformation. Conversely, integrated genome-wide epigenomic and transcriptomic analyses, as well as rational pharmacologic inhibition, revealed targetable vulnerabilities unique to the TP53R248Q; H3.3K27M; PDGFRAD842V tumors and related to their aggressive growth phenotype. These include AREG-mediated cell cycle control, altered metabolism, and vulnerability to combination ONC201/trametinib treatment. Taken together, these data suggest that cooperation between H3.3K27M and PDGFRA influences tumor biology, underscoring the need for better molecular stratification in DMG clinical trials.

7.
BMC Neurol ; 23(1): 9, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36609238

ABSTRACT

BACKGROUND: Glioblastoma (GBM) infrequently recurs in the infratentorial region. Such Infratentorial recurrence (ITR) has some clinically unique characteristics, such as presenting unspecific symptoms and providing patients a chance to receive additional radiotherapy. However, the clinical significances of ITR are not well studied. METHODS: We reviewed newly diagnosed isocitrate dehydrogenase (IDH)-wildtype GBM patients treated at our institution between October 2008 and December 2018. ITR was defined as any type of recurrence in GBM, including dissemination or distant recurrence, which primarily developed in the supratentorial region and recurred in the infratentorial region. RESULTS: Of 134 patients with newly diagnosed IDH-wildtype GBM, six (4.5%) were classified as having ITR. There was no significant difference in median duration from the first surgery to ITR development between patients with and without ITR (12.2 vs. 10.2 months, P = 0.65). The primary symptoms of ITR were gait disturbance (100%, n = 6), dizziness (50.0%, n = 3), nausea (33.3%, n = 2), and cerebellar mutism (16.7%, n = 1). In four cases (66.7%), symptoms were presented before ITR development. All patients received additional treatments for ITR. The median post-recurrence survival (PRS) of ITR patients was significantly shorter than that of general GBM patients (5.5 vs. 9.1 months, P = 0.023). However, chemoradiotherapy contributed to palliating symptoms such as nausea. CONCLUSIONS: ITR is a severe recurrence type in GBM patients. Its symptoms are neurologically unspecific and can be overlooked or misdiagnosed as side effects of treatments. Carefully checking the infratentorial region, especially around the fourth ventricle, is essential during the GBM patient follow-up.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/therapy , Brain Neoplasms/diagnosis , Prognosis , Retrospective Studies
8.
Cell Death Differ ; 30(2): 417-428, 2023 02.
Article in English | MEDLINE | ID: mdl-36460775

ABSTRACT

Caspase-8 is a cysteine protease that plays an essential role in apoptosis. Consistently with its canonical proapoptotic function, cancer cells may genetically or epigenetically downregulate its expression. Unexpectedly, Caspase-8 is often retained in cancer, suggesting the presence of alternative mechanisms that may be exploited by cancer cells to their own benefit. In this regard, we reported that Src tyrosine kinase, which is aberrantly activated in many tumors, promotes Caspase-8 phosphorylation on Tyrosine 380 (Y380) preventing its full activation. Here, we investigated the significance of Caspase-8 expression and of its phosphorylation on Y380 in glioblastoma, a brain tumor where both Caspase-8 expression and Src activity are often aberrantly upregulated. Transcriptomic analyses identified inflammatory response as a major target of Caspase-8, and in particular, NFκB signaling as one of the most affected pathways. More importantly, we could show that Src-dependent phosphorylation of Caspase-8 on Y380 drives the assembly of a multiprotein complex that triggers NFκB activation, thereby inducing the expression of inflammatory and pro-angiogenic factors. Remarkably, phosphorylation on Y380 sustains neoangiogenesis and resistance to radiotherapy. In summary, our work identifies a novel interplay between Src kinase and Caspase-8 that allows cancer cells to hijack Caspase-8 to sustain tumor growth.


Subject(s)
Caspase 8 , Glioblastoma , src-Family Kinases , Humans , Apoptosis , Caspase 3/metabolism , Caspase 8/metabolism , Glioblastoma/genetics , Phosphorylation , Signal Transduction/physiology , src-Family Kinases/metabolism
9.
Biomolecules ; 12(10)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36291588

ABSTRACT

The aim of the present study was to determine which individual or combined CpG sites among O6-methylguanine DNA methyltransferase CpG 74-89 in glioblastoma mainly affects the response to temozolomide resulting from CpG methylation using statistical analyses focused on the tumor volume ratio (TVR). We retrospectively examined 44 patients who had postoperative volumetrically measurable residual tumor tissue and received adjuvant temozolomide therapy for at least 6 months after initial chemoradiotherapy. TVR was defined as the tumor volume 6 months after the initial chemoradiotherapy divided by that before the start of chemoradiotherapy. Predictive values for TVR as a response to adjuvant therapy were compared among the averaged methylation percentages of individual or combined CpGs using the receiver operating characteristic curve. Our data revealed that combined CpG 78 and 79 showed a high area under the curve (AUC) and a positive likelihood ratio and that combined CpG 76-79 showed the highest AUC among all combinations. AUCs of consecutive CpG combinations tended to be higher for CpG 74-82 in exon 1 than for CpG 83-89 in intron 1. In conclusion, the methylation status at CpG sites in exon 1 was strongly associated with TVR reduction in glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Retrospective Studies , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , DNA Methylation , DNA Repair Enzymes/metabolism , High-Throughput Nucleotide Sequencing , DNA/therapeutic use
10.
Neurosurgery ; 91(5): 741-748, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35951724

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a rapidly growing and most life-threatening malignant brain tumor. The significance of early treatment to the clinical outcomes of patients with GBM is unclear. OBJECTIVE: To determine whether early diagnosis and surgery improve the preoperative and postoperative Karnofsky performance status (KPS) and prognosis of patients with GBM. METHODS: Data of isocitrate dehydrogenase-wildtype patients with GBM treated at our institution between January 2010 and December 2019 were reviewed. Patients were classified into early or late diagnosis groups with a threshold of 14 days from initial symptoms. In addition, patients were divided into early, intermediate, and late surgery groups with thresholds of 21 and 35 days. Representative symptoms and patient prognoses were examined. RESULTS: Of 153 patients, 72 and 81 were classified into the early and late diagnosis groups. The median tumor volume was significantly smaller in the former group. The proportion of patients with preoperative KPS scores 90 was 48.6% and 29.6% in the early and late diagnosis groups ( P = .016). The early, intermediate, and late surgery groups included 43, 24, and 86 patients. The median overall survival was significantly longer in the early surgery group than in the late surgery group (28.4 vs 18.7 months, P = .006). Multivariate analysis demonstrated that significant predictors of shorter survival included extent of tumor resection (partial or biopsy), preoperative and postoperative KPS 60, and O6-methylguanine-DNA-methyltransferase promoter status (unmethylated). CONCLUSION: Early diagnosis within 2 weeks and surgical interventions within 3 weeks from the symptom onset are associated with prolonged patient survival. Early GBM treatment will benefit patients with GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Early Diagnosis , Glioblastoma/diagnosis , Glioblastoma/surgery , Humans , Isocitrate Dehydrogenase/genetics , Prognosis , Retrospective Studies , Survival Rate , Treatment Outcome
11.
Genes Dev ; 36(11-12): 737-751, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35798383

ABSTRACT

The primary cilium, a signaling organelle projecting from the surface of a cell, controls cellular physiology and behavior. The presence or absence of primary cilia is a distinctive feature of a given tumor type; however, whether and how the primary cilium contributes to tumorigenesis are unknown for most tumors. Medulloblastoma (MB) is a common pediatric brain cancer comprising four groups: SHH, WNT, group 3 (G3), and group 4 (G4). From 111 cases of MB, we show that primary cilia are abundant in SHH and WNT MBs but rare in G3 and G4 MBs. Using WNT and G3 MB mouse models, we show that primary cilia promote WNT MB by facilitating translation of mRNA encoding ß-catenin, a major oncoprotein driving WNT MB, whereas cilium loss promotes G3 MB by disrupting cell cycle control and destabilizing the genome. Our findings reveal tumor type-specific ciliary functions and underlying molecular mechanisms. Moreover, we expand the function of primary cilia to translation control and reveal a molecular mechanism by which cilia regulate cell cycle progression, thereby providing new frameworks for studying cilium function in normal and pathologic conditions.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Animals , Brain Neoplasms/pathology , Cell Cycle/genetics , Cerebellar Neoplasms/genetics , Cilia/genetics , Humans , Medulloblastoma/genetics , Mice
12.
Front Cell Dev Biol ; 10: 864035, 2022.
Article in English | MEDLINE | ID: mdl-35573667

ABSTRACT

The sonic hedgehog (SHH) pathway regulates the development of the central nervous system in vertebrates. Aberrant regulation of SHH signaling pathways often causes neurodevelopmental diseases and brain tumors. In the cerebellum, SHH secreted by Purkinje cells is a potent mitogen for granule cell progenitors, which are the most abundant cell type in the mature brain. While a reduction in SHH signaling induces cerebellar structural abnormalities, such as hypoplasia in various genetic disorders, the constitutive activation of SHH signaling often induces medulloblastoma (MB), one of the most common pediatric malignant brain tumors. Based on the existing literature on canonical and non-canonical SHH signaling pathways, emerging basic and clinical studies are exploring novel therapeutic approaches for MB by targeting SHH signaling at distinct molecular levels. In this review, we discuss the present consensus on SHH signaling mechanisms, their roles in cerebellar development and tumorigenesis, and the recent advances in clinical trials for MB.

13.
Cancers (Basel) ; 14(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35626060

ABSTRACT

Next-generation sequencing-based comprehensive genomic profiling test (CGPT) enables clinicians and patients to access promising molecularly targeted therapeutic agents. Approximately 10% of patients who undergo CGPT receive an appropriate agent. However, its coverage of glioma patients is seldom reported. The aim of this study was to reveal the comprehensive results of CGPT in glioma patients in our institution, especially the clinical actionability. We analyzed the genomic aberrations, tumor mutation burden scores, and microsatellite instability status. The Molecular Tumor Board (MTB) individually recommended a therapeutic agent and suggested further confirmation of germline mutations after considering the results. The results of 65/104 patients with glioma who underwent CGPTs were reviewed by MTB. Among them, 12 (18.5%) could access at least one therapeutic agent, and 5 (7.7%) were suspected of germline mutations. A total of 49 patients with IDH-wildtype glioblastoma showed frequent genomic aberrations in the following genes: TERT promoter (67%), CDKN2A (57%), CDKN2B (51%), MTAP (41%), TP53 (35%), EGFR (31%), PTEN (31%), NF1 (18%), BRAF (12%), PDGFRA (12%), CDK4 (10%), and PIK3CA (10%). Since glioma patients currently have very limited standard treatment options and a high recurrence rate, CGPT might be a facilitative tool for glioma patients in terms of clinical actionability and diagnostic value.

14.
Radiat Oncol ; 17(1): 85, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35505351

ABSTRACT

BACKGROUND: We sought to clarify the optimal follow-up, therapeutic strategy, especially the role of reirradiation, and the diagnostic impact of isocitrate dehydrogenase (IDH) 1 and 2 mutation status in patients with radiation-induced glioma (RIG). METHODS: We retrospectively reviewed the clinical characteristics and treatment outcomes of 11 patients with high-grade glioma who satisfied Cahan's criteria for RIG in our database during 2001-2021. IDH 1/2 mutations were analyzed by Sanger sequencing and/or pyrosequencing. RESULTS: The RIGs included glioblastoma with IDH 1/2 wild-type (n = 7), glioblastoma not otherwise specified (n = 2), anaplastic astrocytoma with IDH1/2 wild-type (n = 1), and anaplastic astrocytoma not otherwise specified (n = 1). The median period from primary disease and RIG diagnosis was 17 years (range: 9-30 years). All patients underwent tumor removal or biopsy, 5 patients postoperatively received reirradiation combined with chemotherapy, and 6 patients were treated with chemotherapy alone. The median progression-free and survival times were 11.3 and 28.3 months. The median progression-free survival time of patients treated with reirradiation and chemotherapy (n = 5) tended to be longer than that of patients that received chemotherapy alone (n = 6) (17.0 vs 8.1 months). However, the median survival time was similar (29.6 vs 27.4 months). Local recurrence was observed in 5 patients treated with chemotherapy alone, whereas in 2 patients among 4 patients treated with reirradiation and chemotherapy. None of the patients developed radiation necrosis. In one case, the primary tumor was diffuse astrocytoma with IDH2 mutant, and the secondary tumor was glioblastoma with IDH 1/2 wild-type. Based on the difference of IDH2 mutation status, the secondary tumor with IDH 1/2 wild-type was diagnosed as a de novo tumor that was related to the previous radiation therapy. CONCLUSIONS: RIG can occur beyond 20 years after successfully treating the primary disease using radiotherapy; thus, cancer survivors should be informed of the long-term risk of developing RIG and the need for timely neuroimaging evaluation. Reirradiation combined with chemotherapy appears to be feasible and has favorable outcomes. Determining the IDH1/2 mutational status is useful to establish RIG diagnosis when the primary tumor is glioma.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioblastoma , Glioma , Re-Irradiation , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Glioblastoma/therapy , Glioma/genetics , Glioma/radiotherapy , Humans , Isocitrate Dehydrogenase/genetics , Retrospective Studies
15.
J Neurooncol ; 157(3): 561-571, 2022 May.
Article in English | MEDLINE | ID: mdl-35397757

ABSTRACT

PURPOSE: Although the usefulness of O6-methylguanine DNA methyltransferase (MGMT) promoter methylation analysis for predicting response to chemoradiotherapy and the prognosis of patients with glioblastoma has been widely reported, there is still no consensus regarding how to define MGMT promoter methylation percentage (MGMTpm%) cutoffs by pyrosequencing method. The aim of this study was to determine the optimal cutoff value of MGMT promoter methylation status using volumetric analysis focused on the tumor volume ratio (TVR) measured by MRI. METHODS: This retrospective study included newly diagnosed IDH wild-type glioblastoma patients with residual tumor after surgery, followed by local radiotherapy with temozolomide. TVR was defined as the tumor volume at 6 months after the initial chemoradiotherapy administration divided by the tumor volume before the start of therapy. The mean MGMTpm% of 16 CpG islands (74-89) was analyzed using pyrosequencing. We statistically analyzed the correlation between MGMTpm%, TVR, and change in Karnofsky performance status. RESULTS: The study included 44 patients with residual tumors. Thirteen (92.9%) of 14 patients with MGMTpm% ≥ 23.9% showed 50% or more volumetric response, leading to prolonged survival, and 17 (70.8%) of 24 patients with MGMTpm% < 8.2% had progressive disease after initial chemoradiotherapy administration. Three (50.0%) of six patients with MGMTpm% 8.2% to < 23.9% had stable disease or partial response. CONCLUSION: Evaluation of MGMTpm% by pyrosequencing is important in predicting the volumetric response and prognosis of glioblastoma patients with residual tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/therapy , DNA Methylation , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioblastoma/therapy , High-Throughput Nucleotide Sequencing , Humans , Neoplasm, Residual , O(6)-Methylguanine-DNA Methyltransferase/genetics , Prognosis , Retrospective Studies , Tumor Suppressor Proteins/genetics
16.
Anim Sci J ; 93(1): e13686, 2022.
Article in English | MEDLINE | ID: mdl-35103362

ABSTRACT

The effect of the transition from a conventional milking (CM) system in a tie-stall barn to an automated milking (AM) system specialized for a tie-stall barn on milk yield, milk composition, teat-end score, body condition score (BCS), and lying time was evaluated. This study was conducted at a commercial dairy farm from -15 to 153 days after the installation of the AM system. Lactating cows milked with the CM system (average 85 heads) were gradually transitioned to the AM system, and finally, 57 heads were milked with the AM system. No obvious effects of the milking system on milk yield, milk components, BCS, and daily lying time were found based on comparisons between CM and AM cows in the same herd under the same situation of twice-daily milking. The linear mixed-effects model for teat-end scores showed higher scores for front than for rear teats, and small but negative estimates for independent variables of the day after AM, indicating worse teat-end condition for front than for rear teats and improvement of the condition with increased time since AM.


Subject(s)
Dairying , Milk , Animals , Cattle , Farms , Female , Lactation , Mammary Glands, Animal
17.
J Neurooncol ; 156(3): 551-557, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34985720

ABSTRACT

OBJECTIVE: With an increase in the number of imaging examinations and the development of imaging technology, a small number of glioblastomas (GBMs) are identified by incidental radiological images. These incidentally discovered glioblastomas (iGBMs) are rare, and their clinical features are not well understood. Here, we investigated the clinical characteristics and outcomes of iGBM. METHODS: Data of newly diagnosed iGBM patients who were treated at our institution between August 2005 and October 2019 were reviewed. An iGBM was defined as a GBM without a focal sign, discovered on radiological images obtained for reasons unrelated to the tumor. Kaplan-Meier analysis was performed to calculate progression-free survival (PFS) and overall survival (OS). RESULTS: Of 315 patients with newly diagnosed GBM, four (1.3%) were classified as having iGBM. Health screening was the most common reason for tumor discovery (75.0%). The preoperative Karnofsky performance status score was 100 in three patients. Tumors were found on the right side in three cases. The mean volume of preoperative enhanced tumor lesion was 16.8 cm3. The median duration from confirmation of an enhanced lesion to surgery was 13.5 days. In all cases, either total (100%) or subtotal (95-99%) resections were achieved. The median PFS and OS were 10.5 and 20.0 months, respectively. CONCLUSIONS: The iGBMs were often small and in the right non-eloquent area, and the patients had good performance status. We found that timely therapeutic intervention provided iGBM patients with favorable outcomes. This report suggests that early detection of GBM may lead to a better prognosis.


Subject(s)
Brain Neoplasms , Glioblastoma , Incidental Findings , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Glioblastoma/diagnostic imaging , Glioblastoma/therapy , Humans , Kaplan-Meier Estimate , Prognosis , Radiography , Treatment Outcome
18.
Clin Cancer Res ; 28(2): 378-389, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34782365

ABSTRACT

PURPOSE: Gliomas are intrinsic brain tumors with a high degree of constitutive and acquired resistance to standard therapeutic modalities such as radiotherapy and alkylating chemotherapy. Glioma subtypes are recognized by characteristic mutations. Some of these characteristic mutations have shown to generate immunogenic neoepitopes suitable for targeted immunotherapy. EXPERIMENTAL DESIGN: Using peptide-based ELISpot assays, we screened for potential recurrent glioma neoepitopes in MHC-humanized mice. Following vaccination, droplet-based single-cell T-cell receptor (TCR) sequencing from established T-cell lines was applied for neoepitope-specific TCR discovery. Efficacy of intraventricular TCR-transgenic T-cell therapy was assessed in a newly developed glioma model in MHC-humanized mice induced by CRISPR-based delivery of tumor suppressor-targeting guide RNAs. RESULTS: We identify recurrent capicua transcriptional repressor (CIC) inactivating hotspot mutations at position 215 CICR215W/Q as immunogenic MHC class II (MHCII)-restricted neoepitopes. Vaccination of MHC-humanized mice resulted in the generation of robust MHCII-restricted mutation-specific T-cell responses against CICR215W/Q. Adoptive intraventricular transfer of CICR215W-specific TCR-transgenic T cells exert antitumor responses against CICR215W-expressing syngeneic gliomas. CONCLUSIONS: The integration of immunocompetent MHC-humanized orthotopic glioma models in the discovery of shared immunogenic glioma neoepitopes facilitates the identification and preclinical testing of human leukocyte antigen (HLA)-restricted neoepitope-specific TCRs for locoregional TCR-transgenic T-cell adoptive therapy.


Subject(s)
Glioma , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Animals , Disease Models, Animal , Glioma/genetics , Glioma/therapy , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Mice , Neoplasm Recurrence, Local , Receptors, Chimeric Antigen/therapeutic use , T-Lymphocytes
19.
Cancer Sci ; 113(2): 697-708, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34839570

ABSTRACT

Meningioma is the most common intracranial tumor, with generally favorable patient prognosis. However, patients with malignant meningioma typically experience recurrence, undergo multiple surgical resections, and ultimately have a poor prognosis. Thus far, effective chemotherapy for malignant meningiomas has not been established. We recently reported the efficacy of eribulin (Halaven) for glioblastoma with a telomerase reverse transcriptase (TERT) promoter mutation. This study investigated the anti-tumor effect of eribulin against TERT promoter mutation-harboring human malignant meningioma cell lines in vitro and in vivo. Two meningioma cell lines, IOMM-Lee and HKBMM, were used in this study. The strong inhibition of cell proliferation by eribulin via cell cycle arrest was demonstrated through viability assay and flow cytometry. Apoptotic cell death in malignant meningioma cell lines was determined through vital dye assay and immunoblotting. Moreover, a wound healing assay revealed the suppression of tumor cell migration after eribulin exposure. Intraperitoneal administration of eribulin significantly prolonged the survival of orthotopic xenograft mouse models of both malignant meningioma cell lines implanted in the subdural space (P < .0001). Immunohistochemistry confirmed apoptosis in brain tumor tissue treated with eribulin. Overall, these results suggest that eribulin is a potential therapeutic agent for malignant meningiomas.


Subject(s)
Antineoplastic Agents/therapeutic use , Furans/therapeutic use , Ketones/therapeutic use , Meningeal Neoplasms/drug therapy , Meningioma/drug therapy , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Furans/pharmacology , Humans , Kaplan-Meier Estimate , Ketones/pharmacology , Meningeal Neoplasms/genetics , Meningeal Neoplasms/mortality , Meningeal Neoplasms/pathology , Meningioma/genetics , Meningioma/mortality , Meningioma/pathology , Mice , Mutation , Promoter Regions, Genetic , Telomerase/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...