Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Skelet Muscle ; 14(1): 10, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760872

ABSTRACT

Loss-of-function mutations in MEGF10 lead to a rare and understudied neuromuscular disorder known as MEGF10-related myopathy. There are no treatments for the progressive respiratory distress, motor impairment, and structural abnormalities in muscles caused by the loss of MEGF10 function. In this study, we deployed cellular and molecular assays to obtain additional insights about MEGF10-related myopathy in juvenile, young adult, and middle-aged Megf10 knockout (KO) mice. We found fewer muscle fibers in juvenile and adult Megf10 KO mice, supporting published studies that MEGF10 regulates myogenesis by affecting satellite cell differentiation. Interestingly, muscle fibers do not exhibit morphological hallmarks of atrophy in either young adult or middle-aged Megf10 KO mice. We next examined the neuromuscular junction (NMJ), in which MEGF10 has been shown to concentrate postnatally, using light and electron microscopy. We found early and progressive degenerative features at the NMJs of Megf10 KO mice that include increased postsynaptic fragmentation and presynaptic regions not apposed by postsynaptic nicotinic acetylcholine receptors. We also found perisynaptic Schwann cells intruding into the NMJ synaptic cleft. These findings strongly suggest that the NMJ is a site of postnatal pathology in MEGF10-related myopathy. In support of these cellular observations, RNA-seq analysis revealed genes and pathways associated with myogenesis, skeletal muscle health, and NMJ stability dysregulated in Megf10 KO mice compared to wild-type mice. Altogether, these data provide new and valuable cellular and molecular insights into MEGF10-related myopathy.


Subject(s)
Disease Models, Animal , Mice, Knockout , Neuromuscular Junction , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscular Diseases/metabolism , Muscular Diseases/physiopathology , Schwann Cells/metabolism , Schwann Cells/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Male
2.
bioRxiv ; 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38014021

ABSTRACT

In vertebrate retina, individual neurons of the same type are distributed regularly across the tissue in a pattern known as a mosaic. Establishment of mosaics during development requires cell-cell repulsion among homotypic neurons, but the mechanisms underlying this repulsion remain unknown. Here we show that two mouse retinal cell types, OFF and ON starburst amacrine cells, establish mosaic spacing by using their dendritic arbors to repel neighboring homotypic somata. Using newly-generated transgenic tools and single cell labeling, we identify a transient developmental period when starburst somata receive extensive contacts from neighboring starburst dendrites; these serve to exclude somata from settling within the neighbor's dendritic territory. Dendrite-soma exclusion is mediated by MEGF10, a cell-surface molecule required for starburst mosaic patterning. Our results implicate dendrite-soma exclusion as a key mechanism underlying starburst mosaic spacing, and suggest that this could be a general mechanism for mosaic patterning across many cell types and species.

3.
Dev Cell ; 58(20): 2080-2096.e7, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37557174

ABSTRACT

During nervous system development, neurons choose synaptic partners with remarkable specificity; however, the cell-cell recognition mechanisms governing rejection of inappropriate partners remain enigmatic. Here, we show that mouse retinal neurons avoid inappropriate partners by using the FLRT2-uncoordinated-5 (UNC5) receptor-ligand system. Within the inner plexiform layer (IPL), FLRT2 is expressed by direction-selective (DS) circuit neurons, whereas UNC5C/D are expressed by non-DS neurons projecting to adjacent IPL sublayers. In vivo gain- and loss-of-function experiments demonstrate that FLRT2-UNC5 binding eliminates growing DS dendrites that have strayed from the DS circuit IPL sublayers. Abrogation of FLRT2-UNC5 binding allows mistargeted arbors to persist, elaborate, and acquire synapses from inappropriate partners. Conversely, UNC5C misexpression within DS circuit sublayers inhibits dendrite growth and drives arbors into adjacent sublayers. Mechanistically, UNC5s promote dendrite elimination by interfering with FLRT2-mediated adhesion. Based on their broad expression, FLRT-UNC5 recognition is poised to exert widespread effects upon synaptic partner choices across the nervous system.


Subject(s)
Neurons , Retina , Animals , Mice , Neurons/physiology , Signal Transduction , Cell Communication , Synapses/physiology , Dendrites/physiology , Membrane Glycoproteins/metabolism
4.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34732574

ABSTRACT

Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.


Subject(s)
Alternative Splicing , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Synapses/metabolism , Animals , Calcium Channels/metabolism , Mice , Mice, Knockout , Protein Isoforms/metabolism , Proteome , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics
5.
Dev Biol ; 478: 144-154, 2021 10.
Article in English | MEDLINE | ID: mdl-34260962

ABSTRACT

Throughout the central nervous system, astrocytes adopt precisely ordered spatial arrangements of their somata and arbors, which facilitate their many important functions. Astrocyte pattern formation is particularly important in the retina, where astrocytes serve as a template that dictates the pattern of developing retinal vasculature. Thus, if astrocyte patterning is disturbed, there are severe consequences for retinal angiogenesis and ultimately for vision - as seen in diseases such as retinopathy of prematurity. Here we discuss key steps in development of the retinal astrocyte population. We describe how fundamental developmental forces - their birth, migration, proliferation, and death - sculpt astrocytes into a template that guides angiogenesis. We further address the radical changes in the cellular and molecular composition of the astrocyte network that occur upon completion of angiogenesis, paving the way for their adult functions in support of retinal ganglion cell axons. Understanding development of retinal astrocytes may elucidate pattern formation mechanisms that are deployed broadly by other axon-associated astrocyte populations.


Subject(s)
Astrocytes/physiology , Retina/growth & development , Retina/physiology , Animals , Axons/physiology , Cell Death , Cell Differentiation , Cell Movement , Cell Proliferation , Humans , Neovascularization, Physiologic , Nerve Fibers/physiology , Retina/cytology , Retina/embryology , Retinal Ganglion Cells/physiology , Retinal Vessels/embryology , Retinal Vessels/growth & development , Retinal Vessels/physiology , Retinopathy of Prematurity/pathology , Retinopathy of Prematurity/physiopathology
6.
Development ; 148(9)2021 05 01.
Article in English | MEDLINE | ID: mdl-33960384

ABSTRACT

Angiogenesis in the developing mammalian retina requires patterning cues from astrocytes. Developmental disorders of retinal vasculature, such as retinopathy of prematurity (ROP), involve arrest or mispatterning of angiogenesis. Whether these vascular pathologies involve astrocyte dysfunction remains untested. Here, we demonstrate that the major risk factor for ROP - transient neonatal exposure to excess oxygen - disrupts formation of the angiogenic astrocyte template. Exposing newborn mice to elevated oxygen (75%) suppressed astrocyte proliferation, whereas return to room air (21% oxygen) at postnatal day 4 triggered extensive proliferation, massively increasing astrocyte numbers and disturbing their spatial patterning prior to the arrival of developing vasculature. Proliferation required astrocytic HIF2α and was also stimulated by direct hypoxia (10% oxygen), suggesting that astrocyte oxygen sensing regulates the number of astrocytes produced during development. Along with astrocyte defects, return to room air also caused vascular defects reminiscent of ROP. Strikingly, these vascular phenotypes were more severe in animals that had larger numbers of excess astrocytes. Together, our findings suggest that fluctuations in environmental oxygen dysregulate molecular pathways controlling astrocyte proliferation, thereby generating excess astrocytes that interfere with retinal angiogenesis.


Subject(s)
Astrocytes/metabolism , Cell Proliferation/physiology , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/physiology , Oxygen/metabolism , Retina/growth & development , Animals , Animals, Newborn , Astrocytes/cytology , Astrocytes/drug effects , Cell Proliferation/drug effects , Female , Hypoxia/metabolism , Mice , Neovascularization, Physiologic/drug effects , Oxygen/pharmacology , Retina/abnormalities , Retina/metabolism , Retina/pathology , Retinal Vessels/metabolism , Retinopathy of Prematurity
7.
Nat Commun ; 11(1): 3328, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620864

ABSTRACT

Genes encoding cell-surface proteins control nervous system development and are implicated in neurological disorders. These genes produce alternative mRNA isoforms which remain poorly characterized, impeding understanding of how disease-associated mutations cause pathology. Here we introduce a strategy to define complete portfolios of full-length isoforms encoded by individual genes. Applying this approach to neural cell-surface molecules, we identify thousands of unannotated isoforms expressed in retina and brain. By mass spectrometry we confirm expression of newly-discovered proteins on the cell surface in vivo. Remarkably, we discover that the major isoform of a retinal degeneration gene, CRB1, was previously overlooked. This CRB1 isoform is the only one expressed by photoreceptors, the affected cells in CRB1 disease. Using mouse mutants, we identify a function for this isoform at photoreceptor-glial junctions and demonstrate that loss of this isoform accelerates photoreceptor death. Therefore, our isoform identification strategy enables discovery of new gene functions relevant to disease.


Subject(s)
Genetic Variation , Membrane Proteins/genetics , Photoreceptor Cells, Vertebrate/metabolism , RNA Isoforms/genetics , Retina/metabolism , Retinal Degeneration/genetics , Amino Acid Sequence , Animals , Base Sequence , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Humans , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA Isoforms/metabolism , Retina/cytology , Retina/growth & development , Retinal Degeneration/metabolism , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
8.
Neuron ; 106(1): 37-65.e5, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32027825

ABSTRACT

The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities.


Subject(s)
Gene Targeting/methods , Integrases/genetics , Neurons/metabolism , Oocytes/metabolism , Recombination, Genetic/genetics , Spermatozoa/metabolism , Animals , Female , Genes, Reporter , Germ Cells , Male , Mice , Mice, Transgenic , Mosaicism
9.
Neuron ; 105(3): 464-474.e6, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31812516

ABSTRACT

Many neuronal types occur as pairs that are similar in most respects but differ in a key feature. In some pairs of retinal neurons, called paramorphic, one member responds to increases and the other to decreases in luminance (ON and OFF responses). Here, we focused on one such pair, starburst amacrine cells (SACs), to explore how closely related neuronal types diversify. We find that ON and OFF SACs are transcriptionally distinct prior to their segregation, dendritic outgrowth, and synapse formation. The transcriptional repressor Fezf1 is selectively expressed by postmitotic ON SACs and promotes the ON fate and gene expression program while repressing the OFF fate and program. The atypical Rho GTPase Rnd3 is selectively expressed by OFF SACs and regulates their migration but is repressed by Fezf1 in ON SACs, enabling differential positioning of the two types. These results define a transcriptional program that controls diversification of a paramorphic pair.


Subject(s)
Amacrine Cells/metabolism , Interneurons/metabolism , Mitosis/physiology , Repressor Proteins/biosynthesis , Repressor Proteins/genetics , Transcription, Genetic/physiology , Amacrine Cells/chemistry , Animals , Animals, Newborn , Female , HEK293 Cells , Humans , Interneurons/chemistry , Mice , Mice, 129 Strain , Mice, Transgenic , Pregnancy , Repressor Proteins/analysis
10.
Adv Exp Med Biol ; 1185: 251-255, 2019.
Article in English | MEDLINE | ID: mdl-31884620

ABSTRACT

Mutations in the gene Crumbs homolog 1 (CRB1) are responsible for several retinopathies that are diverse in severity and phenotype. Thus, there is considerable incentive to determine how disruption of this gene causes disease. Progress on this front will aid in developing molecular diagnostics that can predict disease severity with the ultimate goal of developing therapies for CRB1 retinopathies via gene replacement. The purpose of this review is to summarize what is known regarding CRB1 and highlights information outstanding. Doing so will provide a framework toward a thorough understanding of CRB1 at the molecular and protein level with the ultimate goal of deciphering how it contributes to the disease.


Subject(s)
Eye Proteins/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Retinal Diseases/genetics , Animals , Disease Models, Animal , Humans , Mice , Mice, Knockout , Mutation , Paraneoplastic Syndromes, Ocular
11.
PLoS Biol ; 17(10): e3000492, 2019 10.
Article in English | MEDLINE | ID: mdl-31626642

ABSTRACT

Naturally occurring cell death is a fundamental developmental mechanism for regulating cell numbers and sculpting developing organs. This is particularly true in the nervous system, where large numbers of neurons and oligodendrocytes are eliminated via apoptosis during normal development. Given the profound impact of death upon these two major cell populations, it is surprising that developmental death of another major cell type-the astrocyte-has rarely been studied. It is presently unclear whether astrocytes are subject to significant developmental death, and if so, how it occurs. Here, we address these questions using mouse retinal astrocytes as our model system. We show that the total number of retinal astrocytes declines by over 3-fold during a death period spanning postnatal days 5-14. Surprisingly, these astrocytes do not die by apoptosis, the canonical mechanism underlying the vast majority of developmental cell death. Instead, we find that microglia engulf astrocytes during the death period to promote their developmental removal. Genetic ablation of microglia inhibits astrocyte death, leading to a larger astrocyte population size at the end of the death period. However, astrocyte death is not completely blocked in the absence of microglia, apparently due to the ability of astrocytes to engulf each other. Nevertheless, mice lacking microglia showed significant anatomical changes to the retinal astrocyte network, with functional consequences for the astrocyte-associated vasculature leading to retinal hemorrhage. These results establish a novel modality for naturally occurring cell death and demonstrate its importance for the formation and integrity of the retinal gliovascular network.


Subject(s)
Astrocytes/cytology , Cell Death/genetics , Microglia/cytology , Retina/cytology , Animals , Animals, Newborn , Astrocytes/drug effects , Astrocytes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Blood Vessels/metabolism , Blood Vessels/physiopathology , Cell Communication , Cell Count , Diphtheria Toxin/toxicity , Gene Expression Regulation, Developmental , Genes, Reporter , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , PAX2 Transcription Factor/genetics , PAX2 Transcription Factor/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Retina/drug effects , Retina/metabolism , Retinal Hemorrhage/genetics , Retinal Hemorrhage/metabolism , Retinal Hemorrhage/physiopathology , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
12.
Immunity ; 50(3): 723-737.e7, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30850344

ABSTRACT

Microglia from different nervous system regions are molecularly and anatomically distinct, but whether they also have different functions is unknown. We combined lineage tracing, single-cell transcriptomics, and electrophysiology of the mouse retina and showed that adult retinal microglia shared a common developmental lineage and were long-lived but resided in two distinct niches. Microglia in these niches differed in their interleukin-34 dependency and functional contribution to visual-information processing. During certain retinal-degeneration models, microglia from both pools relocated to the subretinal space, an inducible disease-associated niche that was poorly accessible to monocyte-derived cells. This microglial transition involved transcriptional reprogramming of microglia, characterized by reduced expression of homeostatic checkpoint genes and upregulation of injury-responsive genes. This transition was associated with protection of the retinal pigmented epithelium from damage caused by disease. Together, our data demonstrate that microglial function varies by retinal niche, thereby shedding light on the significance of microglia heterogeneity.


Subject(s)
Homeostasis/physiology , Microglia/pathology , Retinal Degeneration/pathology , Animals , Disease Models, Animal , Epithelium, Corneal/pathology , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Retina/pathology , Up-Regulation/physiology
13.
Curr Opin Neurobiol ; 53: 139-145, 2018 12.
Article in English | MEDLINE | ID: mdl-30092409

ABSTRACT

Dendrites are the conduits for receiving (and in some cases transmitting) neural signals; their ability to do these jobs is a direct result of their morphology. Developmental patterning mechanisms are critical to ensuring concordance between dendritic form and function. This article reviews recent studies in vertebrate retina and brain that elucidate key strategies for dendrite functional maturation. Specific cellular and molecular signals control the initiation and elaboration of dendritic arbors, and facilitate integration of young neurons into particular circuits. In some cells, dendrite growth and remodeling continues into adulthood. Once formed, dendrites subdivide into compartments with distinct physiological properties that enable dendritic computations. Understanding these key stages of dendrite patterning will help reveal how circuit functional properties arise during development.


Subject(s)
Amacrine Cells/physiology , Dendrites/physiology , Morphogenesis/physiology , Nerve Net/growth & development , Neuronal Plasticity/physiology , Animals , Humans
14.
Elife ; 72018 04 03.
Article in English | MEDLINE | ID: mdl-29611808

ABSTRACT

A common strategy by which developing neurons locate their synaptic partners is through projections to circuit-specific neuropil sublayers. Once established, sublayers serve as a substrate for selective synapse formation, but how sublayers arise during neurodevelopment remains unknown. Here, we identify the earliest events that initiate formation of the direction-selective circuit in the inner plexiform layer of mouse retina. We demonstrate that radially migrating newborn starburst amacrine cells establish homotypic contacts on arrival at the inner retina. These contacts, mediated by the cell-surface protein MEGF10, trigger neuropil innervation resulting in generation of two sublayers comprising starburst-cell dendrites. This dendritic scaffold then recruits projections from circuit partners. Abolishing MEGF10-mediated contacts profoundly delays and ultimately disrupts sublayer formation, leading to broader direction tuning and weaker direction-selectivity in retinal ganglion cells. Our findings reveal a mechanism by which differentiating neurons transition from migratory to mature morphology, and highlight this mechanism's importance in forming circuit-specific sublayers.


Subject(s)
Amacrine Cells/physiology , Neuropil/physiology , Retina/embryology , Retinal Ganglion Cells/physiology , Animals , Membrane Proteins/metabolism , Mice
15.
Glia ; 65(10): 1697-1716, 2017 10.
Article in English | MEDLINE | ID: mdl-28722174

ABSTRACT

Immature astrocytes and blood vessels enter the developing mammalian retina at the optic nerve head and migrate peripherally to colonize the entire retinal nerve fiber layer (RNFL). Retinal vascularization is arrested in retinopathy of prematurity (ROP), a major cause of bilateral blindness in children. Despite their importance in normal development and ROP, the factors that control vascularization of the retina remain poorly understood. Because astrocytes form a reticular network that appears to provide a substrate for migrating endothelial cells, they have long been proposed to guide angiogenesis. However, whether astrocytes do in fact impose a spatial pattern on developing vessels remains unclear, and how astrocytes themselves are guided is unknown. Here we explore the cellular mechanisms that ensure complete retinal coverage by astrocytes and blood vessels in mouse. We find that migrating astrocytes associate closely with the axons of retinal ganglion cells (RGCs), their neighbors in the RNFL. Analysis of Robo1; Robo2 mutants, in which RGC axon guidance is disrupted, and Math5 (Atoh7) mutants, which lack RGCs, reveals that RGCs provide directional information to migrating astrocytes that sets them on a centrifugal trajectory. Without this guidance, astrocytes exhibit polarization defects, fail to colonize the peripheral retina, and display abnormal fine-scale spatial patterning. Furthermore, using cell type-specific chemical-genetic tools to selectively ablate astrocytes, we show that the astrocyte template is required for angiogenesis and vessel patterning. Our results are consistent with a model whereby RGC axons guide formation of an astrocytic network that subsequently directs vessel development.


Subject(s)
Astrocytes/physiology , Axons/physiology , Neovascularization, Physiologic/physiology , Retina/cytology , Retina/growth & development , Retinal Ganglion Cells/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Diphtheria Toxin/pharmacology , Eye Proteins/genetics , Eye Proteins/metabolism , Female , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Male , Mice , Mice, Transgenic , Mutation/genetics , Neovascularization, Physiologic/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , PAX2 Transcription Factor/genetics , PAX2 Transcription Factor/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Retinal Ganglion Cells/cytology , Homeobox Protein SIX3
16.
J Comp Neurol ; 525(8): 1759-1777, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-27997986

ABSTRACT

Müller glia, the most abundant glia of vertebrate retina, have an elaborate morphology characterized by a vertical stalk that spans the retina and branches in each retinal layer. Müller glia play diverse, critical roles in retinal homeostasis, which are presumably enabled by their complex anatomy. However, much remains unknown, particularly in mouse, about the anatomical arrangement of Müller cells and their arbors, and how these features arise in development. Here we use membrane-targeted fluorescent proteins to reveal the fine structure of mouse Müller arbors. We find sublayer-specific arbor specializations within the inner plexiform layer (IPL) that occur consistently at defined laminar locations. We then characterize Müller glia spatial patterning, revealing how individual cells collaborate to form a pan-retinal network. Müller cells, unlike neurons, are spread across the retina with homogenous density, and their arbor sizes change little with eccentricity. Using Brainbow methods to label neighboring cells in different colors, we find that Müller glia tile retinal space with minimal overlap. The shape of their arbors is irregular but nonrandom, suggesting that local interactions between neighboring cells determine their territories. Finally, we identify a developmental window at postnatal Days 6 to 9 when Müller arbors first colonize the synaptic layers beginning in stereotyped inner plexiform layer sublaminae. Together, our study defines the anatomical arrangement of mouse Müller glia and their network in the radial and tangential planes of the retina, in development and adulthood. The local precision of Müller glia organization suggests that their morphology is sculpted by specific cell to cell interactions with neurons and each other.


Subject(s)
Ependymoglial Cells/cytology , Retina/cytology , Animals , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Immunohistochemistry , Mice , Mice, Inbred C57BL , Microscopy, Confocal
17.
J Cell Biol ; 215(2): 147-149, 2016 Oct 24.
Article in English | MEDLINE | ID: mdl-27810908

ABSTRACT

Newborn neuron radial migration is a key force shaping the nervous system. In this issue, Icha et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201604095) use zebrafish retinal ganglion cells as a model to investigate the cell biological basis of radial migration and the consequences for retinal histogenesis when migration is impaired.


Subject(s)
Cell Movement , Retinal Neurons/cytology , Animals , Cell Polarity , Microtubules/metabolism , Retinal Ganglion Cells/cytology , Zebrafish
18.
Neuron ; 91(4): 824-836, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27499083

ABSTRACT

Myelination occurs selectively around neuronal axons to increase the efficiency and velocity of action potentials. While oligodendrocytes are capable of myelinating permissive structures in the absence of molecular cues, structurally permissive neuronal somata and dendrites remain unmyelinated. Utilizing a purified spinal cord neuron-oligodendrocyte myelinating co-culture system, we demonstrate that disruption of dynamic neuron-oligodendrocyte signaling by chemical cross-linking results in aberrant myelination of the somatodendritic compartment of neurons. We hypothesize that an inhibitory somatodendritic cue is necessary to prevent non-axonal myelination. Using next-generation sequencing and candidate profiling, we identify neuronal junction adhesion molecule 2 (JAM2) as an inhibitory myelin-guidance molecule. Taken together, our results demonstrate that the somatodendritic compartment directly inhibits myelination and suggest a model in which broadly indiscriminate myelination is tailored by inhibitory signaling to meet local myelination requirements.


Subject(s)
Junctional Adhesion Molecule B/physiology , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Animals , Coculture Techniques , Junctional Adhesion Molecule B/biosynthesis , Junctional Adhesion Molecule B/genetics , Mice , Mice, Knockout , Myelin Sheath/ultrastructure , Oligodendroglia/ultrastructure , Primary Cell Culture , Rats , Spinal Cord/physiology , Spinal Cord/ultrastructure
19.
Elife ; 4: e08149, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26633812

ABSTRACT

In the inner plexiform layer (IPL) of the mouse retina, ~70 neuronal subtypes organize their neurites into an intricate laminar structure that underlies visual processing. To find recognition proteins involved in lamination, we utilized microarray data from 13 subtypes to identify differentially-expressed extracellular proteins and performed a high-throughput biochemical screen. We identified ~50 previously-unknown receptor-ligand pairs, including new interactions among members of the FLRT and Unc5 families. These proteins show laminar-restricted IPL localization and induce attraction and/or repulsion of retinal neurites in culture, placing them in an ideal position to mediate laminar targeting. Consistent with a repulsive role in arbor lamination, we observed complementary expression patterns for one interaction pair, FLRT2-Unc5C, in vivo. Starburst amacrine cells and their synaptic partners, ON-OFF direction-selective ganglion cells, express FLRT2 and are repelled by Unc5C. These data suggest a single molecular mechanism may have been co-opted by synaptic partners to ensure joint laminar restriction.


Subject(s)
Cell Communication , Membrane Glycoproteins/metabolism , Neurons/physiology , Receptors, Cell Surface/metabolism , Retina/anatomy & histology , Retina/physiology , Animals , Biochemistry/methods , Gene Expression Profiling , Mice , Microarray Analysis , Netrin Receptors , Protein Binding , Protein Interaction Mapping , Proteome/analysis
20.
Annu Rev Cell Dev Biol ; 31: 741-77, 2015.
Article in English | MEDLINE | ID: mdl-26422333

ABSTRACT

The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type-specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: (a) dendrite shape, including branching pattern and geometry of the arbor; (b) dendritic arbor size;


Subject(s)
Dendrites/physiology , Animals , Chromosome Pairing/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL