Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Amino Acids ; 51(10-12): 1485-1499, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31535220

ABSTRACT

L-Arginine:glycine amidinotransferase (AGAT) is the main producer of the creatine precursor, guanidinoacetate (GAA), and L-homoarginine (hArg). We and others previously reported lower levels of circulating and urinary hArg in renal transplant recipients (RTR) compared to healthy subjects. In adults, hArg emerged as a novel risk factor for renal and cardiovascular adverse outcome. Urinary GAA was found to be lower in children and adolescents with kidney transplants compared to healthy controls. Whether GAA is also a risk factor in the renal and cardiovascular systems of adults, is not yet known. In the present study, we aimed to investigate the significance of circulating GAA and the GAA-to-hArg molar ratio (GAA/hArg) in adult RTR. We hypothesized that GAA/hArg represents a measure of the balanced state of the AGAT activity in the kidneys, and would prospectively allow assessing a potential association between GAA/hArg and long-term outcome in RTR. The median follow-up period was 5.4 years. Confounders and potential mediators of GAA/hArg associations were evaluated with multivariate linear regression analyses, and the association with all-cause and cardiovascular mortality or death-censored graft loss was studied with Cox regression analyses. The study cohort consisted of 686 stable RTR and 140 healthy kidney donors. Median plasma GAA concentration was significantly lower in the RTR compared to the kidney donors before kidney donation: 2.19 [1.77-2.70] µM vs. 2.78 [2.89-3.35] µM (P < 0.001). In cross-sectional multivariable analyses in RTR, HDL cholesterol showed the strongest association with GAA/hArg. In prospective analyses in RTR, GAA/hArg was associated with a higher risk for all-cause mortality (hazard ratio (HR): 1.35 [95% CI 1.19-1.53]) and cardiovascular mortality (HR: 1.46 [95% CI 1.24-1.73]), independent of potential confounders. GAA but not GAA/hArg was associated with death-censored graft loss in crude survival and Cox regression analyses. The association of GAA and death-censored graft loss was lost after adjustment for eGFR. Our study suggests that in the kidneys of RTR, the AGAT-catalyzed biosynthesis of GAA is decreased. That high GAA/hArg is associated with a higher risk for all-cause and cardiovascular mortality may suggest that low plasma hArg is a stronger contributor to these adverse outcomes in RTR than GAA.


Subject(s)
Cardiovascular Diseases/mortality , Glycine/analogs & derivatives , Homoarginine/blood , Kidney Transplantation/mortality , Adult , Aged , Cardiovascular Diseases/blood , Cardiovascular Diseases/etiology , Cause of Death , Cross-Sectional Studies , Female , Follow-Up Studies , Glycine/blood , Humans , Kidney Transplantation/adverse effects , Male , Middle Aged , Multivariate Analysis , Proportional Hazards Models , Risk Factors
2.
Amino Acids ; 51(3): 529-547, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30604095

ABSTRACT

We developed and validated gas chromatography-mass spectrometry (GC-MS) methods for the simultaneous measurement of amino acids and their metabolites in 10-µL aliquots of human plasma and urine. De novo synthesized trideutero-methyl esters were used as internal standards. Plasma proteins were precipitated by acidified methanol and removed by centrifugation. Supernatants and native urine were evaporated to dryness. Amino acids were first esterified using 2 M HCl in methanol and then amidated using pentafluoropropionic anhydride for electron-capture negative-ion chemical ionization. Time programmes were used for the gas chromatograph oven and the selected-ion monitoring of specific anions. The GC-MS methods were applied in clinical studies on the HELLP syndrome and pediatric kidney transplantation (KTx) focusing on L-arginine-related pathways. We found lower sarcosine (N-methylglycine) and higher asymmetric dimethylarginine (ADMA) plasma concentrations in HELLP syndrome women (n = 7) compared to healthy pregnant women (n = 5) indicating altered methylation. In plasma of pediatric KTx patients, lower guanidinoacetate and homoarginine concentrations were found in plasma but not in urine samples of patients treated with standard mycophenolate mofetil-based immunosuppression (MMF; n = 22) in comparison to matched patients treated with MMF-free immunosuppression (n = 22). On average, the global arginine bioavailability ratio was by about 40% lower in the MMF group compared to the EVR group (P = 0.004). Mycophenolate, the major pharmacologically active metabolite of MMF, is likely to inhibit the arginine:glycine amidinotransferase (AGAT), and to enhance arginase activity in leukocytes and other types of cell of MMF-treated children.


Subject(s)
Amidines/metabolism , Amino Acids/blood , Amino Acids/urine , Arginase/metabolism , Gas Chromatography-Mass Spectrometry/methods , HELLP Syndrome/metabolism , Kidney Diseases/metabolism , Kidney Transplantation/methods , Adolescent , Adult , Arginine/metabolism , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Immunosuppressive Agents/pharmacology , Kidney Diseases/drug therapy , Kidney Diseases/surgery , Methylation , Pilot Projects , Pregnancy
3.
Amino Acids ; 51(3): 565-575, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30610470

ABSTRACT

Asymmetric dimethylarginine (ADMA) is a methylated form of arginine and an endogenous nitric oxide synthase inhibitor. Renal function decline is associated with increase of plasma ADMA in chronic kidney disease populations. It is yet unknown how isolated renal function impairment affects ADMA homeostasis in healthy humans. Here, we measured plasma concentrations and urinary excretion of ADMA using GC-MS/MS in 130 living kidney donors before and at 1.6 (1.6-1.9) months after donation. We additionally analyzed 201 stable renal transplant recipients (RTR) that were included > 1 year after transplantation, as a model for kidney disease in the context of single kidney state. We measured true glomerular filtration rate (mGFR) using 125I-iothalamate. To study enzymatic metabolism of ADMA, we also measured L-citrulline as primary metabolite. Mean age was 52 ± 10 years in donors and 54 ± 12 years in RTR. Renal function was significantly reduced from pre- to post-donation (mGFR: 104 ± 17 vs. 66 ± 10 ml/min per 1.73 m2 BSA, - 36 ± 7%, P < 0.001). Urinary ADMA excretion strongly and significantly decreased from pre- to post-donation (60.6 ± 16.0 vs. 40.5 ± 11.5 µmol/24 h, - 31.5 ± 21.5%, P < 0.001), while plasma ADMA increased only slightly (0.53 ± 0.08 vs. 0.58 ± 0.09 µM, 11.1 ± 20.1%, P < 0.001). Compared to donors post-donation, RTR had significantly worse renal function (mGFR: 49 ± 18 ml/min/1.73 m2, - 25 ± 2%, P < 0.001) and lower urinary ADMA excretion (30.9 ± 12.4 µmol/24 h, - 23.9 ± 3.4%, P < 0.001). Plasma ADMA in RTR (0.60 ± 0.11 µM) did not significantly differ from donors post-donation (2.9 ± 1.9%, P = 0.13). Plasma citrulline was inversely associated with mGFR (st. ß: - 0.23, P < 0.001), consistent with increased ADMA metabolism to citrulline with lower GFR. In both groups, the response of urinary ADMA excretion to renal function loss was much larger than that of plasma ADMA. As citrulline was associated with GFR, our data indicate that with renal function impairment, a decrease in urinary ADMA excretion does not lead to a corresponding increase in plasma ADMA, likely due to enhanced metabolism, thus allowing for lower renal excretion of ADMA.


Subject(s)
Arginine/analogs & derivatives , Citrulline/blood , Homeostasis , Kidney Diseases/physiopathology , Kidney Transplantation , Living Donors , Transplant Recipients , Arginine/blood , Arginine/urine , Case-Control Studies , Female , Glomerular Filtration Rate , Humans , Kidney Diseases/metabolism , Kidney Function Tests , Male , Middle Aged , Prospective Studies , Tandem Mass Spectrometry
4.
Amino Acids ; 50(10): 1391-1406, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30003335

ABSTRACT

The L-arginine/nitric oxide synthase (NOS) pathway is considered to be altered in muscular dystrophy such as Becker muscular dystrophy (BMD). We investigated two pharmacological options aimed to increase nitric oxide (NO) synthesis in 20 male BMD patients (age range 21-44 years): (1) supplementation with L-citrulline (3 × 5 g/d), the precursor of L-arginine which is the substrate of neuronal NO synthase (nNOS); and (2) treatment with the antidiabetic drug metformin (3 × 500 mg/d) which activates nNOS in human skeletal muscle. We also investigated the combined use of L-citrulline (3 × 5 g/d) and metformin (3 × 500 mg/d). Before and after treatment, we measured in serum and urine samples the concentration of amino acids and metabolites of L-arginine-related pathways and the oxidative stress biomarker malondialdehyde (MDA). Compared to healthy subjects, BMD patients have altered NOS, arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) pathways. Metformin treatment resulted in concentration decrease of arginine and MDA in serum, and of homoarginine (hArg) and guanidinoacetate (GAA) in serum and urine. L-Citrulline supplementation resulted in considerable increase of the concentrations of amino acids and creatinine in the serum, and in their urinary excretion rates. Combined use of metformin and L-citrulline attenuated the effects obtained from their single administrations. Metformin, L-citrulline or their combination did not alter serum nitrite and nitrate concentrations and their urinary excretion rates. In conclusion, metformin or L-citrulline supplementation to BMD patients results in remarkable antidromic changes of the AGAT and GAMT pathways. In combination, metformin and L-citrulline at the doses used in the present study seem to abolish the biochemical effects of the single drugs in slight favor of L-citrulline.


Subject(s)
Arginine/metabolism , Citrulline/administration & dosage , Metformin/administration & dosage , Muscular Dystrophy, Duchenne/drug therapy , Adult , Amidinotransferases/metabolism , Creatinine/blood , Dietary Supplements/analysis , Female , Glycine/analogs & derivatives , Glycine/blood , Guanidinoacetate N-Methyltransferase/metabolism , Homoarginine/blood , Humans , Male , Middle Aged , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/enzymology , Muscular Dystrophy, Duchenne/metabolism , Nitrates/blood , Nitric Oxide Synthase Type I/metabolism , Treatment Outcome , Young Adult
5.
Cardiovasc Diabetol ; 17(1): 1, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29301528

ABSTRACT

NG-Methylation of L-arginine (Arg) residues in certain proteins by protein arginine methyltransferases and subsequent proteolysis yields NG-monomethyl-L-arginine (MMA), NG,NG-dimethyl-L-arginine (asymmetric dimethylarginine, ADMA) and NG,N'G-dimethyl-L-arginine (symmetric dimethylarginine, SDMA). Biological MMA, ADMA and SDMA occur as free acids in the nM-range and as residues of proteins of largely unknown quantity. Arginine:glycine amidinotransferase (AGAT) catalyzes the synthesis of L-homoarginine (hArg) from free Arg and L-lysine. Biological hArg is considered to occur exclusively as free acid in the lower µM-range. Nitric oxide synthase (NOS) catalyzes the conversion of Arg (high affinity) and hArg (low affinity) to nitric oxide (NO) which is a pleiotropic signaling molecule. MMA, ADMA and SDMA are inhibitors (MMA > ADMA â‰« SDMA) of NOS activity. Slightly elevated ADMA and SDMA concentrations and slightly reduced hArg concentrations in the circulation are associated with many diseases including diabetes mellitus. Yet, this is paradox: (1) free ADMA and SDMA are weak inhibitors of endothelial NOS (eNOS) which is primarily responsible for NO-related effects in the cardiovascular system, with free hArg being a poor substrate for eNOS; (2) free ADMA, SDMA and hArg are not associated with oxidative stress which is considered to induce NO-related endothelial dysfunction. This ADMA/SDMA/hArg paradox may be solved by the assumption that not the free acids but their precursor proteins exert biological effects in the vasculature, with hArg antagonizing the effects of NG-methylated proteins.


Subject(s)
Arginine/analogs & derivatives , Cardiovascular Diseases/metabolism , Endothelium, Vascular/metabolism , Homoarginine/metabolism , Animals , Arginine/metabolism , Cardiovascular Diseases/physiopathology , Endothelium, Vascular/physiopathology , Humans , Methylation , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/metabolism , Proteolysis , Signal Transduction
6.
Amino Acids ; 49(12): 2033-2044, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28710553

ABSTRACT

L-Homoarginine (hArg) and guanidinoacetate (GAA) are produced from L-arginine (Arg) by the catalytic action of arginine:glycine amidinotransferase. Guanidinoacetate methyltransferase methylates GAA on its non-guanidine N atom to produce creatine. Arg and hArg are converted by nitric oxide synthase (NOS) to nitric oxide (NO). NO is oxidized to nitrite and nitrate which circulate in the blood and are excreted in the urine. Asymmetric dimethylarginine (ADMA), an NOS inhibitor, is widely accepted to be exclusively produced after asymmetric N G-methylation of Arg residues in proteins and their regular proteolysis. Low circulating and urinary hArg concentrations and high circulating concentrations of ADMA emerged as risk markers in the human renal and cardiovascular systems. While ADMA's distribution and metabolism are thoroughly investigated, such studies on hArg are sparse. The aim of the present pilot study was to investigate the distribution of exogenous hArg in plasma, liver, kidney, lung, and heart in a rat model of takotsubo cardiomyopathy (TTC). hArg hydrochloride solutions in physiological saline were injected intra-peritoneally at potentially pharmacological, non-toxic doses of 20, 220, or 440 mg/kg body weight. Vehicle (saline) served as control. As hArg has been reported to be a pro-oxidant, plasma and tissue malondialdehyde (MDA) was measured as a biomarker of lipid peroxidation. hArg administration resulted in dose-dependent maximum plasma hArg concentrations and distribution in all investigated organs. hArg disappeared from plasma with an elimination half-life ranging between 20 and 40 min. hArg administration resulted in relatively small changes in the plasma and tissue content of Arg, GAA, ADMA, creatinine, and of the NO metabolites nitrite and nitrate. Remarkable changes were observed for tissue GAA, notably in the kidney. Plasma and tissue MDA concentration did not change upon hArg administration, suggesting that even high-dosed hArg is not an oxidant. The lowest hArg dose of 20 mg/kg bodyweight increased 25-fold the mean hArg maximum plasma concentration. This hArg dose seems to be useful as the upper limit in forthcoming studies on the putative cardioprotective effects of hArg in our rat model of TTC.


Subject(s)
Amidinotransferases/analysis , Glycine/analogs & derivatives , Homoarginine/pharmacokinetics , Kidney/metabolism , Takotsubo Cardiomyopathy/metabolism , Animals , Arginine/analogs & derivatives , Arginine/blood , Arginine/metabolism , Glycine/blood , Glycine/metabolism , Guanidinoacetate N-Methyltransferase , Half-Life , Homoarginine/administration & dosage , Homoarginine/blood , Homoarginine/metabolism , Humans , Kidney/drug effects , Lipid Peroxidation/drug effects , Malondialdehyde/blood , Models, Animal , Nitric Oxide Synthase , Pilot Projects , Rats , Rats, Sprague-Dawley , Tissue Distribution
7.
Amino Acids ; 49(7): 1193-1202, 2017 07.
Article in English | MEDLINE | ID: mdl-28429125

ABSTRACT

In renal transplant recipients (RTR), we recently found that low urinary excretion of homoarginine (hArg) is associated with mortality and graft failure. However, it is not known whether such prospective associations also hold true for plasma concentrations of hArg. In the present study, we therefore determined plasma concentrations of hArg in the same cohort, i.e. in 687 RTR (functioning graft ≥1 year), and in 140 healthy donors, before and after kidney donation. Plasma hArg concentrations were significantly lower in RTR compared to healthy controls [1.24 (0.95-1.63) µM vs. 1.58 (1.31-2.03) µM, P < 0.001], and kidney donation resulted in a decrease in plasma hArg concentration to 1.41 (1.10-1.81) µM (P < 0.001). In RTR, multivariable linear regression analysis revealed BMI (ß = 0.124), heart rate (ß = -0.091), pre-emptive transplantation (ß = 0.078), antidiabetic medication (ß = -0.091), eGFR (ß = 0.272), plasma PTH (ß = -0.098), uric acid (ß = 0.137), alkaline phosphatase (ß = -0.100), HDL (ß = -0.111), NT-pro-BNP (ß = -0.166), and urinary urea excretion (ß = 0.139) as main determinants of plasma hArg (all P < 0.05). In RTR, plasma hArg concentration was inversely associated with all-cause [hazard ratio (HR) 0.59 (95% CI 0.50-0.70), P < 0.001] and cardiovascular mortality [HR 0.50 (0.39-0.66), P < 0.001], both expressed per standard deviation change in log-transformed hArg, independent of potential confounders. To conclude, our results suggest that the kidney is a major hArg production site and an important modulator of hArg homeostasis in the renal and cardiovascular systems. Moreover, low plasma hArg is independently associated with increased risk of cardiovascular mortality in RTR, which corroborates the cardiovascular importance of preserving kidney function after transplantation.


Subject(s)
Graft Rejection/blood , Graft Rejection/mortality , Homoarginine/blood , Kidney Transplantation , Adult , Aged , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Risk Factors
8.
Amino Acids ; 49(6): 1111-1121, 2017 06.
Article in English | MEDLINE | ID: mdl-28285332

ABSTRACT

Asymmetric dimethylarginine (ADMA) and L-homoarginine (hArg) are L-arginine (Arg) metabolites derived from different pathways. Protein arginine N-methyltransferase (PRMT) and subsequent proteolysis of proteins containing methylarginine residues release ADMA. Arginine:glycine amidinotransferase (AGAT) converts Arg to hArg and guanidinoacetate (GAA). While high concentrations of ADMA and low concentrations of hArg in the blood have been established as cardiovascular risk markers, the cardiovascular relevance of GAA is still unexplored. Arg and hArg are substrates and ADMA is an inhibitor of nitric oxide (NO) synthase (NOS). The cardiovascular effects of ADMA and hArg have been related to NO, a potent endogenous vasodilator. ADMA and hArg are considered to exert additional, not yet explored, presumably NO-unrelated effects and to act antagonistically in the renal and cardiovascular systems. Although the physiological role of Arg, ADMA, hArg and NO for endothelial function in small- and medium-sized arteries has been intensively studied in the past, the clinical relevance of aortic wall remodeling still remains unclear. Here, we evaluated potential relation between aortic distensibility (AD) or aortic intima-media thickness (aIMT) and circulating ADMA, hArg, GAA, and the NO metabolites nitrite and nitrate in the plasma of 78 patients (24 females, 54 males; aged 59 ± 14 years) with recent ischemic stroke or transient ischemic attack (TIA). All biochemical parameters were determined by stable-isotope dilution gas chromatography-mass spectrometry. AD and aIMT were measured by transesophageal echocardiography. Arg, hArg, ADMA and GAA median plasma concentrations (µM) were determined to be 61, 1.43, 0.50 and 2.16, respectively. hArg, ADMA and GAA correlated closely with Arg. Nitrite, nitrate and creatinine median plasma concentrations (µM) were 2.49, 48.7, and 84.1, respectively. Neither AD (2.61 vs. 1.85 10-6 × cm2 × dyn-1, P = 0.064) nor aIMT (1.25 vs. 1.13 mm, P = 0.596) differed between females and males. The hArg/ADMA molar ratio (r = -0.351, P = 0.009), nitrate (r = 0.364, P = 0.007) and nitrite (r = 0.329, P = 0.015) correlated with aIMT but not with AD. Arg, hArg, ADMA and GAA correlated with aIMT but not with AD. The results demonstrate a strong relation between the Arg/NO pathway and aortic atherosclerosis but not with AD suggesting different mechanisms underlying the two aspects of aortic wall remodeling.


Subject(s)
Aorta , Atherosclerosis , Endothelium, Vascular , Homoarginine/blood , Nitric Oxide/blood , Stroke , Aorta/diagnostic imaging , Aorta/metabolism , Arginine/analogs & derivatives , Arginine/blood , Atherosclerosis/blood , Atherosclerosis/diagnostic imaging , Endothelium, Vascular/diagnostic imaging , Endothelium, Vascular/metabolism , Female , Humans , Male , Middle Aged , Stroke/blood , Stroke/diagnostic imaging , Ultrasonography , Vascular Remodeling
9.
Amino Acids ; 49(4): 783-794, 2017 04.
Article in English | MEDLINE | ID: mdl-28161799

ABSTRACT

L-Arginine (Arg) and L-homoarginine (hArg) are precursors of nitric oxide (NO), a signalling molecule with multiple important roles in human organism. In the circulation of adults, high concentrations of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) and low concentrations of hArg emerged as cardiovascular risk factors. Yet, the importance of the Arg/hArg/NO pathway, especially of hArg and ADMA, in preterm neonates is little understood. We comprehensively investigated the Arg/hArg/NO pathway in 106 healthy preterm infants (51 boys, 55 girls) aged between 23 + 6 and 36 + 1 gestational weeks. Babies were divided into two groups: group I consisted of 31 babies with a gestational age of 23 + 6 - 29 + 6 weeks; group II comprised 75 children with a gestational age of 30 + 0 - 36 + 1 weeks. Plasma and urine concentrations of ADMA, SDMA, hArg, Arg, dimethylamine (DMA) which is the major urinary ADMA metabolite, as well as of nitrite and nitrate, the major NO metabolites, were determined by GC-MS and GC-MS/MS methods. ADMA and hArg plasma levels, but not the hArg/ADMA molar ratio, were significantly higher in group II than in group I: 895 ± 166 nM vs. 774 ± 164 nM (P = 0.001) for ADMA and 0.56 ± 0.04 µM vs. 0.48 ± 0.08 µM (P = 0.010) for hArg. There was no statistical difference between the groups with regard to urinary ADMA (12.2 ± 4.6 vs 12.8 ± 3.6 µmol/mmol creatinine; P = 0.61) and urinary SDMA. Urinary hArg, ADMA, SDMA correlated tightly with each other. Urinary excretion of DMA was slightly higher in group I compared to group II: 282 ± 44 vs. 247 ± 35 µmol/mmol creatinine (P = 0.004). The DMA/ADMA molar ratio in urine was tendentiously higher in neonates of group I compared to group II: 27 ± 13 vs. 20 ± 5 (P = 0.065). There were no differences between the groups with respect to Arg in plasma and to nitrite and nitrate in plasma and urine. In preterm neonates, ADMA and hArg biosynthesis increases with gestational age without remarkable changes in the hArg/ADMA ratio or NO biosynthesis. Our study suggests that ADMA and hArg are involved in foetal growth.


Subject(s)
Arginine/analogs & derivatives , Arginine/metabolism , Fetal Development/physiology , Homoarginine/physiology , Nitric Oxide/metabolism , Arginine/physiology , Female , Gestational Age , Humans , Infant, Newborn , Infant, Premature , Male , Metabolic Networks and Pathways
11.
Article in English | MEDLINE | ID: mdl-27343144

ABSTRACT

GC-MS and GC-MS/MS methods were developed and validated for the quantitative determination of ibuprofen (d0-ibuprofen), a non-steroidal anti-inflammatory drug (NSAID), in human plasma using α-methyl-2H3-4-(isobutyl)phenylacetic acid (d3-ibuprofen) as internal standard. Plasma (10µL) was diluted with acetate buffer (80µL, 1M, pH 4.9) and d0- and d3-ibuprofen were extracted with ethyl acetate (2×500µL). After solvent evaporation d0- and d3-ibuprofen were derivatized in anhydrous acetonitrile by using pentafluorobenzyl (PFB) bromide and N,N-diisopropylethylamine as the base catalyst. Under electron-capture negative-ion chemical ionization (ECNICI), the PFB esters of d0- and d3-ibuprofen readily ionize to form their carboxylate anions [M-PFB]- at m/z 205 and m/z 208, respectively. Collision-induced dissociation (CID) of m/z 205 and m/z 208 resulted in the formation of the anions at m/z 161 and m/z 164, respectively, due to neutral loss of CO2 (44 Da). A collision energy-dependent H/D isotope effect was observed, which involves abstraction/elimination of H- from d0-ibuprofen and D- from d3-ibuprofen and is minimum at a CE value of 5eV. Quantitative GC-MS determination was performed by selected-ion monitoring of m/z 205 and m/z 208. Quantitative GC-MS/MS determination was performed by selected-reaction monitoring of the mass transitions m/z 205 to m/z 161 for d0-ibuprofen and m/z 208 to m/z 164 for d3-ibuprofen. In a therapeutically relevant concentration range (0-1000µM) d0-ibuprofen added to human plasma was determined with accuracy (recovery, %) and imprecision (relative standard deviation, %) ranging between 93.7 and 110%, and between 0.8 and 4.9%, respectively. GC-MS (y) and GC-MS/MS (x) yielded almost identical results (y=4.00+0.988x, r2=0.9991). In incubation mixtures of arachidonic acid (10µM), d3-ibuprofen (10µM) or d0-ibuprofen (10µM) with ovine cyclooxygenase (COX) isoforms 1 and 2, the concentration of d3-ibuprofen and d0-ibuprofen did not change upon incubation at 37°C up to 60min. The trough pharmacokinetics of an inhaled arginine-containing ibuprofen preparation in mice was studied after once-daily treatment (0.0, 0.07, 0.4 and 2.5mg/kg body weight) for three days. A linear relationship between ibuprofen concentration in serum (10µL) and administered dose 24h after the last drug administration was observed.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Ibuprofen/blood , Ibuprofen/isolation & purification , Liquid-Liquid Extraction/methods , Tandem Mass Spectrometry/methods , Acetates , Animals , Deuterium/blood , Deuterium/chemistry , Deuterium/metabolism , Female , Fluorobenzenes , Humans , Ibuprofen/chemistry , Ibuprofen/metabolism , Limit of Detection , Linear Models , Mice , Mice, Inbred BALB C , Reproducibility of Results
12.
Article in English | MEDLINE | ID: mdl-27052124

ABSTRACT

Creatinine in urine is a useful biochemical parameter to correct the urinary excretion rate of endogenous and exogenous substances. Nitrite (ONO-) and nitrate (ONO2-) are metabolites of nitric oxide (NO), a signalling molecule with multiple biological functions. Under certain and standardized conditions, the concentration of nitrate in the urine is a suitable measure of whole body NO synthesis. The urinary nitrate-to-nitrite molar ratio (UNOxR) may indicate nitrite-dependent renal carbonic anhydrase (CA) activity. In clinical studies, urine is commonly collected by spontaneous micturition. In those cases the nitrate and nitrite excretion must be corrected for creatinine excretion. Pentafluorobenzyl (PFB) bromide (PFB-Br) is a useful derivatization reagent of numerous inorganic and organic compounds, including urinary nitrite, nitrate and creatinine, for highly sensitive and specific quantitation by GC-MS. Here, we report on the simultaneous PFB-Br derivatization (60min, 50°C) of ONO-, O15NO-, ONO2-, O15NO2-, creatinine (do-Crea) and [methylo-2H3]creatinine (d3-Crea) in acetonic dilutions of native human urine and plasma samples (4:1, v/v) and their simultaneous quantification by GC-MS as PFBNO2, PFB15NO2, PFBONO2, PFBO15NO2, do-Crea-PFB and d3-Crea-PFB, respectively. Electron capture negative-ion chemical ionization (ECNICI) of these derivatives generates anions due to [M-PFB]-, i.e., the starting analytes. Quantification is performed by selected-ion monitoring (SIM) of m/z 46 (ONO-), m/z 47 (O15NO-), m/z 62 (ONO2-), m/z 63 (O15NO2-), m/z 112 (do-Crea), and m/z 115 (d3-Crea). Retention times were 2.97min for PFB-ONO2/PFB-O15NO2, 3.1min for PFB-NO2/PFB-15NO2, and 6.7min for do-Crea-PFB/d3-Crea-PFB. We used this method to investigate the effects of long-term oral NaNO3 or NaCl (serving as placebo) supplementation (each 0.1mmol/kg body weight per day for 3 weeks) on creatinine excretion and UNOxR in 17 healthy young men. Compared to NaCl (n=8), NaNO3 (n=9) supplementation increased UNOxR (1709±355 vs. 369±77, P<0.05). Creatinine excretion did not differ between the groups (6.67±1.34mM vs. 5.72±1.27mM, P=0.57). The method is also applicable to human plasma. In 78 adults patients newly diagnosed for cerebrovascular disease (CVD), there was a close correlation (r=0.9833) between the creatinine concentrations measured in plasma by GC-ECNICI-MS and those measured in serum by an enzymatic assay. Creatinine-corrected plasma nitrate and nitrite concentrations (P=0.035 and P=0.004, respectively) but not their concentrations (P=0.68 and P=0.40, respectively) differ between male (n=54) and female (n=24) CVD patients. No such differences were found between preterm newborn boys (n=25) and girls (n=22). Like in urine, circulating creatinine may be useful to correct for gender-specific differences in plasma nitrite and nitrate in adults. Chronic NaNO3 supplementation to healthy young men does not affect renal CA-dependent nitrite excretion or creatinine synthesis and excretion.


Subject(s)
Creatinine/blood , Creatinine/urine , Gas Chromatography-Mass Spectrometry/methods , Nitrates/blood , Nitrates/urine , Nitrites/blood , Nitrites/urine , Adult , Cerebrovascular Disorders/blood , Cerebrovascular Disorders/urine , Female , Humans , Infant, Newborn , Limit of Detection , Male , Young Adult
14.
Article in English | MEDLINE | ID: mdl-27511795

ABSTRACT

2-Arachidonoyl glycerol (2AG) is an endocannabinoid that activates cannabinoid (CB) receptors CB1 and CB2. Monoacylglycerol lipase (MAGL) inactivates 2AG through hydrolysis to arachidonic acid (AA) and glycerol, thus modulating the activity at CB receptors. In the brain, AA released from 2AG by the action of MAGL serves as a substrate for cyclooxygenases which produce pro-inflammatory prostaglandins. Here we report stable-isotope GC-MS and LC-MS/MS assays for the reliable measurement of MAGL activity. The assays utilize deuterium-labeled 2AG (d8-2AG; 10µM) as the MAGL substrate and measure deuterium-labeled AA (d8-AA; range 0-1µM) as the MAGL product. Unlabelled AA (d0-AA, 1µM) serves as the internal standard. d8-AA and d0-AA are extracted from the aqueous buffered incubation mixtures by ethyl acetate. Upon solvent evaporation the residue is reconstituted in the mobile phase prior to LC-MS/MS analysis or in anhydrous acetonitrile for GC-MS analysis. LC-MS/MS analysis is performed in the negative electrospray ionization mode by selected-reaction monitoring the mass transitions [M-H]-→[M-H - CO2]-, i.e., m/z 311→m/z 267 for d8-AA and m/z 303→m/z 259 for d0-AA. Prior to GC-MS analysis d8-AA and d0-AA were converted to their pentafluorobenzyl (PFB) esters by means of PFB-Br. GC-MS analysis is performed in the electron-capture negative-ion chemical ionization mode by selected-ion monitoring the ions [M-PFB]-, i.e., m/z 311 for d8-AA and m/z 303 for d0-AA. The GC-MS and LC-MS/MS assays were cross-validated. Linear regression analysis between the concentration (range, 0-1µM) of d8-AA measured by LC-MS/MS (y) and that by GC-MS (x) revealed a straight line (r2=0.9848) with the regression equation y=0.003+0.898x, indicating a good agreement. In dog liver, we detected MAGL activity that was inhibitable by the MAGL inhibitor JZL-184. Exogenous eicosatetraynoic acid is suitable as internal standard for the quantitative determination of d8-AA produced from d8-2AG by hepatic MAGL activity. The formation of d8-prostaglandin E2 by the consecutive catalytic action of recombinant MAGL on d8-2AG and recombinant cyclooxygenase-2 (COX) on d8-AA was demonstrated by GC-MS/MS.


Subject(s)
Arachidonic Acid/metabolism , Endocannabinoids/metabolism , Enzyme Assays/methods , Gas Chromatography-Mass Spectrometry/methods , Monoacylglycerol Lipases/metabolism , Tandem Mass Spectrometry/methods , Animals , Arachidonic Acid/analysis , Cell Line , Chromatography, Liquid/methods , Dogs , Glycerol/analogs & derivatives , Glycerol/metabolism , Humans , Liver/enzymology , Recombinant Proteins/metabolism
16.
Amino Acids ; 48(2): 593-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26602568

ABSTRACT

The dicarboxylic tripeptide glutathione (GSH) is the most abundant intracellular thiol. GSH analysis by liquid chromatography is routine. Yet, GSH analysis by gas chromatography is challenged due to thermal instability and lacking volatility. We report a high-yield laboratory method for the preparation of (2)H-labeled GSH dimethyl ester ((d3Me)2-GSH) for use as internal standard (IS) which was characterized by LC-MS/MS. For GC-MS analysis, the dimethyl esters of GSH and the IS were derivatized with pentafluoropropionic (PFP) anhydride. Electron-capture negative-ion chemical ionization of the (Me)2-(PFP)3-GSH provided high sensitivity. We encourage increasing use of GC-MS in the analysis of amino acids as their Me-PFP derivatives in the ECNICI mode.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Glutathione/analysis , Esters , Fluorocarbons/chemistry , Ions
17.
Amino Acids ; 48(3): 721-732, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26573540

ABSTRACT

Low concentrations of L-homoarginine (hArg) in plasma or serum and urine have recently emerged as a novel cardiovascular risk factor. Previously, we reported gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) methods for the quantitative determination of hArg and Arg in plasma, serum, urine and other biological samples. In these methods, plasma and serum are ultrafiltered by means of commercially available cartridges (10 kDa), and 10-µL ultrafiltrate aliquots are subjected to a two-step derivatization procedure, yielding the methyl ester tri(N-pentafluoropropionyl) derivatives. De novo prepared trideuteromethyl ester hArg (d3Me-hArg) was used as an internal standard. To make the hArg analysis in plasma more convenient, straightforward and cheaper we performed two key modifications: (1) precipitation of plasma proteins by methanol and (2) use of newly prepared and d3Me-hArg as the internal standard. The method was validated and used for the quantitative determination of hArg in human plasma by GC-MS after electron-capture negative-ion chemical ionization (ECNICI) using methane as the reactant gas. Intra-assay accuracy (recovery) and imprecision (relative standard deviation) were within generally accepted ranges (93-109 and 2.3-10 %, respectively). Furthermore, we extended the applicability of this method to guanidinoacetate (GAA). This is of particular importance because hArg and GAA are produced from Arg by the catalytic action of arginine:glycine amidinotransferase (AGAT) also known as glycine:arginine transamidinase (GATM). Using this method, we quantitated simultaneously hArg, Arg and GAA in the selected-ion monitoring mode in 10-µL aliquots of plasma. In plasma samples of 17 non-medicated healthy young men, the concentration of hArg, GAA and Arg was determined to be (mean ± SD) 1.7 ± 0.6, 2.6 ± 0.8, 91 ± 29 µM, respectively. The correlation between hArg and Arg was borderline (r = 0.47, P = 0.06). GAA strongly correlated with Arg (r = 0.82, P < 0.0001) but did not correlate with hArg (r = 0.17, P = 0.52). The plasma concentrations of hArg, GAA and Arg measured in 9 patients suffering from stroke or transitory ischemic attack were 1.8 ± 0.6, 2.7 ± 0.4 and 82 ± 17 µM. The ratio values of the hArg, GAA and Arg concentrations measured after removal of plasma proteins by methanol precipitation or ultrafiltration were 0.94 ± 0.1, 0.94 ± 0.08, and 0.88 ± 0.07, respectively. Simultaneous measurement of hArg and GAA in human plasma may allow assessment of AGAT activity in vivo with respect both to GAA and to hArg and their relationship in health, disease, nutrition and pharmacotherapy.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Glycine/analogs & derivatives , Homoarginine/blood , Ischemia/blood , Stroke/blood , Adult , Aged , Arginine/blood , Deuterium/chemistry , Female , Glycine/blood , Glycine/chemistry , Healthy Volunteers , Homoarginine/chemistry , Humans , Indicator Dilution Techniques , Ischemia/diagnosis , Isotope Labeling , Male , Middle Aged , Molecular Structure , Racial Groups , Stroke/diagnosis , Young Adult
18.
Amino Acids ; 47(9): 1865-74, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26123986

ABSTRACT

High circulating levels of asymmetric dimethylarginine (ADMA) and low circulating levels of homoarginine (hArg) are known cardiovascular risk factors in adults. While in adults with type 1 diabetes mellitus (T1DM) circulating ADMA is significantly elevated, in children and adolescents the reported ADMA data are contradictory. In 102 children with T1DM and 95 healthy controls (HC) serving as controls, we investigated the L-arginine (Arg)/nitric oxide (NO) pathway. Children with T1DM were divided into two groups, i.e., in children with newly diagnosed diabetes mellitus [T1DM-ND; n = 10; age, 8.8 (4.4-11.2) years; HbA1c, 13 (8.9-13.9) %] and in those with long-term treatment [T1DM-T; n = 92; age, 12.5 (10.5-15.4) years; HbA1c, 8.0 (7.2-8.6) %]. The age of the HC was 11.3 (8-13.3) years. Amino acids and NO metabolites of the Arg/NO pathway, creatinine and the oxidative stress biomarker malondialdehyde (MDA) were measured by GC-MS or GC-MS/MS. Plasma hArg, ADMA and the hArg/ADMA molar ratio did not differ between the T1DM and HC groups. There was a significant difference between T1DM-T and HC with regard to plasma nitrite [0.53 (0.48-0.61) vs 2.05 (0.86-2.36) µM, P < 0.0001] as well as to urinary nitrite [0.09 (0.06-0.17) vs 0.22 (0.13-0.37) µmol/mmol creatinine, P < 0.0001]. Plasma, but not urinary nitrite, differed between T1DM-ND and HC [0.55 (0.50-0.66) vs 2.05 (0.86-2.36) µM, P < 0.0001]. Plasma MDA did not differ between the groups. The urinary nitrate-to-nitrite molar ratio (UNOXR), a measure of nitrite-dependent renal carbonic anhydrase (CA) activity, was higher in T1DM-T [1173 (738-1481), P < 0.0001] and T1DM-ND [1341 (1117-1615), P = 0.0007] compared to HC [540 (324-962)], but did not differ between T1DM-T and T1DM-ND (P = 0.272). The lower nitrite excretion in the children with T1DM may indicate enhanced renal CA-dependent nitrite reabsorption compared with healthy children. Yet, lower plasma nitrite concentration in the T1DM patients may have also contributed to the higher UNOXR. Patients' age correlated positively with plasma hArg and hArg/ADMA and urinary DMA/ADMA. Plasma ADMA and urinary ADMA, DMA, nitrite and nitrate correlated negatively with age of the T1DM-T children. Significant correlations were found between plasma hArg and plasma Arg (r = 0.468, P < 0.0001), and urinary DMA (r = -0.426, P = 0.0001), ADMA (r = -0.266, P = 0.021) and nitrate (r = -0.234, P = 0.043). Plasma hArg correlated positively with age at diagnosis (r = +0.337, P = 0.002). ADMA, but not hArg, correlated with HbA1c in T1DM-T (r = -0.418, P < 0.0001) and T1DM-ND (r = +0.879, P = 0.0016). The greatest differences between T1DM-T and T1DM-ND were observed for urinary ADMA, DMA/ADMA ratio, nitrite and nitrate. The Arg/NO pathway is altered in T1DM in childhood and adolescence, yet the role and the importance of hArg and ADMA in T1DM remain to be elucidated. In young T1DM patients, oxidative stress (lipid peroxidation) is not elevated.


Subject(s)
Carbonic Anhydrases/metabolism , Diabetes Mellitus, Type 1/blood , Homoarginine/blood , Kidney/enzymology , Nitric Oxide/blood , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Diabetes Mellitus, Type 1/pathology , Female , Humans , Kidney/pathology , Lipid Peroxidation , Male , Oxidative Stress , Prospective Studies
19.
Amino Acids ; 47(9): 1875-83, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26123987

ABSTRACT

Adult subjects with growth hormone (GH) deficiency (GHD) are known to have reduced life expectancy due to increased cardiovascular and cerebrovascular events. In adults, these events are associated with elevated circulating concentrations of asymmetric dimethylarginine (ADMA) which is an endogenous inhibitor of L-arginine (Arg)-derived nitric oxide (NO). Low circulating concentrations of homoarginine (hArg) emerged as a cardiovascular risk factor. In adults, hArg seems to antagonize ADMA. In the present work, we tested the hypothesis that children with short stature without or with GHD have altered Arg/NO pathway as compared to children with normal growth. We studied 66 short stature children (38 boys, 28 girls) aged 3.5-17.3 years, who underwent the routine L-Arginine Test to diagnose presence of GHD. GHD was confirmed in 47 children (GHD group; 30 boys, 17 girls) and was absent in the remaining 19 children (non-GHD group; 8 boys, 11 girls). In addition, we investigated 24 healthy age- and gender-matched children (10 boys, 14 girls) with normal growth. In EDTA plasma samples of all children, we determined by mass spectrometry-based methods the concentrations of Arg, hArg and ADMA, and calculated the Arg/ADMA and hArg/ADMA molar ratios. With respect to these biochemical parameters, we did not find statistically significant differences between the GHD and non-GHD groups. Comparing short with normal stature children, we found small differences regarding plasma hArg concentrations [mean ± SD; median (25th-75th percentile)]: 2.06 ± 0.52 µM; 2.12 (1.74-2.36) µM vs. 1.7 ± 0.5 µM; 1.6 (1.4-1.8) µM, P < 0.001. Compared to normal stature children, short stature children had considerably higher plasma concentrations of ADMA [0.77 ± 0.15 µM; 0.77 (0.66-0.85) µM vs. 0.57 ± 0.09 µM; 0.58 (0.50-0.63) µM, P < 0.001], but not of Arg [83.3 ± 19.2 µM; 82.2 (71.9-90.3) µM vs. 86.5 ± 17.8 µM; 84.8 (77.2-94.8) µM, P = 0.336], or the hArg/ADMA ratio [2.74 ± 0.76; 2.7 (2.2-3.1) vs. 3.1 ± 1.2; 2.85 (2.42-3.66), P = 0.161. hArg in the GHD group (r = 0.41, P = 0.004) and the hArg/ADMA ratio in both groups (r = 0.44, P = 0.002 in GHD; r = 0.55, P = 0.01 in non-GHD)], but not ADMA were positively correlated with insulin-like growth factor-1 (IGF-1). hArg and hArg/ADMA differed between girls and boys in the GHD and non-GHD groups but in the normal growth group. The hArg/ADMA ratio increased with age in all groups. Our study suggests that hArg and ADMA are involved in growth in the childhood, presumably in an antagonistic manner, with ADMA slowing and hArg accelerating growth.


Subject(s)
Arginine/analogs & derivatives , Growth Disorders/blood , Homoarginine/blood , Human Growth Hormone/deficiency , Adolescent , Adult , Arginine/blood , Child , Female , Growth Disorders/diagnosis , Growth Disorders/physiopathology , Humans , Insulin-Like Growth Factor I/metabolism , Male
20.
Amino Acids ; 47(9): 1827-36, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26142633

ABSTRACT

Renal transplant recipients (RTR) have an increased cardiovascular risk profile. Low levels of circulating homoarginine (hArg) are a novel risk factor for mortality and the progression of atherosclerosis. The kidney is known as a major source of hArg, suggesting that urinary excretion of hArg (UhArg) might be associated with mortality and graft failure in RTR. hArg was quantified by mass spectrometry in 24-h urine samples of 704 RTR (functioning graft ≥1 year) and 103 healthy subjects. UhArg determinants were identified with multivariable linear regression models. Associations of UhArg with all-cause mortality and graft failure were assessed using multivariable Cox regression analyses. UhArg excretion was significantly lower in RTR compared to healthy controls [1.62 (1.09-2.61) vs. 2.46 (1.65-4.06) µmol/24 h, P < 0.001]. In multivariable linear regression models, body surface area, diastolic blood pressure, eGFR, pre-emptive transplantation, serum albumin, albuminuria, urinary excretion of urea and uric acid and use of sirolimus were positively associated with UhArg, while donor age and serum phosphate were inversely associated (model R (2) = 0.43). During follow-up for 3.1 (2.7-3.9) years, 83 (12 %) patients died and 45 (7 %) developed graft failure. UhArg was inversely associated with all-cause mortality [hazard risk (HR) 0.52 (95 % CI 0.40-0.66), P < 0.001] and graft failure [HR 0.58 (0.42-0.81), P = 0.001]. These associations remained independent of potential confounders. High UhArg levels are associated with reduced all-cause mortality and graft failure in RTR. Kidney-derived hArg is likely to be of particular importance for proper maintenance of cardiovascular and renal systems.


Subject(s)
Graft Rejection/mortality , Graft Rejection/urine , Homoarginine/urine , Kidney Transplantation , Models, Biological , Adult , Age Factors , Disease-Free Survival , Female , Follow-Up Studies , Graft Rejection/drug therapy , Humans , Male , Sirolimus/administration & dosage , Survival Rate , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL
...