Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 6151, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35413971

ABSTRACT

A small animal population becomes extinct owing to demographic and environmental stochasticity after declining below the minimum viable population (MVP). However, the actual process of extinction derived by stochastic factors after crossing MVP has not been recorded for long-lived marine mammals. Here, we reconstructed the declining history of a small, isolated population of dugongs in Okinawa over 125 years. The initial population size of approximately 280-420 in the nineteenth century declined to approximately < 100 in 1917 because of overfishing, < 70 in 1979, 11 in 1997, 3 after 2006, and all known individuals disappeared or died by 2019. After 1979, a decline in the natural growth rate has led to extinction. Long-lived animals may persist for a few decades after the population falls below the MVP, at which time active conservation measures, such as captive breeding, should be implemented.


Subject(s)
Dugong , Animals , Conservation of Natural Resources , Extinction, Biological , Fisheries , Japan , Population Density , Population Dynamics
2.
Talanta ; 221: 121666, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33076173

ABSTRACT

Anthropogenic CO2 emissions are contributing to global warming and ocean acidification. Rapid and accurate measurements of seawater carbonate chemistry are critical to understand current changes in the ocean and to predict future effects of such changes on marine organisms and ecosystems. Total alkalinity (AT) measurements can be used to directly determine the calcification rate, but they are time-consuming and require large sample volumes. Herein, we describe an automated and transportable flow-through system that can conduct continuous AT measurement using an ion sensitive field effect transistor (ISFET) - Ag/AgCl sensor and three different reference materials. The response time, stability, and uncertainty of our system were evaluated by comparing AT values of calibrated reference materials to those calculated by our system. Our system requires only small amounts of seawater (<10 mL) and a short time per sample (<5 min) to produce results with a relative uncertainty of less than 0.1% (approx. 2.2 µmol kg-1). This system is expected to facilitate easy and rapid in-situ measurement of AT. Continuous AT measurements would enable us to determine short-term calcification responses to changes in light or temperature and improve our understanding of the metabolic mechanisms of creatures such as corals.

3.
Sci Rep ; 10(1): 7338, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355177

ABSTRACT

Atoll islands are small, low-lying and highly vulnerable to sea level rise (SLR). Because these islands are fully composed of the skeletons from coral reef creatures, the healthy coral ecosystem plays a pivotal role in island resilience against SLR. The environmental deterioration of reefs caused by increases in the human population has been recently reported, but the timing and process are unknown. We investigated the annual black bands in a coral boring core from Fongafale Island, the capital of Tuvalu, which is a symbolic atoll country that is being submerged due to SLR. The iron redox state and microbial gene segments in the coral skeleton might be new environmental indicators that reveal the linkage between anthropogenic activity and coral reef ecosystems. Our findings provide the first demonstration that iron sulfide has formed concentrated black layers since 1991 under the seasonal anoxic conditions inside coral annual bands. Since the 1990s, increasing human activity and domestic waste-induced eutrophication has promoted sludge and/or turf algae proliferation with the subsequent seasonal destruction, resulting in sulfate reduction by anaerobic bacteria. With the recent climate variability, these anthropogenic effects have induced the mass mortality of branching corals, deteriorated the coral reef ecosystem and deprived the resilience of the island against SLR.


Subject(s)
Anthozoa/physiology , Coral Reefs , Ecosystem , Eutrophication , Animals , Calibration , Climate , Conservation of Natural Resources , Human Activities , Hypoxia , Micronesia , Seasons , X-Ray Diffraction
4.
PLoS One ; 13(1): e0190872, 2018.
Article in English | MEDLINE | ID: mdl-29315312

ABSTRACT

Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems.


Subject(s)
Coral Reefs , Acids/analysis , Carbon/analysis , Ecosystem , Eutrophication , Global Warming , Hydrogen-Ion Concentration , Seawater/chemistry
5.
Glob Chang Biol ; 20(6): 1873-84, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24623530

ABSTRACT

'Blue Carbon', which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2.


Subject(s)
Alismatales/metabolism , Carbon Cycle , Carbon Dioxide/metabolism , Ecosystem , Climate Change , Geography , Japan , Seasons
6.
Chemosphere ; 95: 628-34, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24200049

ABSTRACT

To evaluate contamination of coastal sediments along Fongafale Islet, Central Pacific, a field survey was conducted in densely populated, sparsely populated, open dumping and undisturbed natural areas. Current measurements in shallow water of the lagoon indicated that contaminants from the densely populated area would only be transported for a small proportion of a tidal cycle. Acid-volatile sulfides were detected in both the intertidal beach and nearshore zones of the densely populated area, whereas these were no detection in the other areas. This observation lends support to argument that the coastal pollution mechanism that during ebb tide, domestic wastewater leaking from poorly constructed sanitary facilities seeps into the coast. The total concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were relatively high in all of the areas except the undisturbed natural area. The indices of contamination factor, pollution load index and geoaccumulation index were indicative of heavy metal pollution in the three areas. The densely populated area has the most significant contamination; domestic wastewater led to significant contamination of coastal sediments with Cr, Zn, Cu, Pb and Cd. The open dumping area is noteworthy with respect to Mn and Ni, which can be derived from disposed batteries.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Micronesia , Seawater/chemistry , Wastewater/statistics & numerical data
7.
Mar Pollut Bull ; 60(8): 1279-87, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20399474

ABSTRACT

Human impacts on sand-producing, large benthic foraminifers were investigated on ocean reef flats at the northeast Majuro Atoll, Marshall Islands, along a human population gradient. The densities of dominant foraminifers Calcarina and Amphistegina declined with distance from densely populated islands. Macrophyte composition on ocean reef flats differed between locations near sparsely or densely populated islands. Nutrient concentrations in reef-flat seawater and groundwater were high near or on densely populated islands. delta(15)N values in macroalgal tissues indicated that macroalgae in nearshore lagoons assimilate wastewater-derived nitrogen, whereas those on nearshore ocean reef flats assimilate nitrogen from other sources. These results suggest that increases in the human population result in high nutrient loading in groundwater and possibly into nearshore waters. High nutrient inputs into ambient seawater may have both direct and indirect negative effects on sand-producing foraminifers through habitat changes and/or the collapse of algal symbiosis.


Subject(s)
Environmental Monitoring/methods , Foraminifera/growth & development , Water Pollutants/analysis , Environment , Fresh Water/chemistry , Humans , Micronesia , Nitrogen/analysis , Phosphates/analysis , Population Density , Seawater/chemistry
8.
Anal Sci ; 18(3): 247-53, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11918180

ABSTRACT

A fully automated, continuous-flow-through type analyzer was developed to observe rapid changes in the concentration of total inorganic carbon (CT) in coastal zones. Seawater and an H3PO4 solution were fed into the analyzer's mixing coil by two high-precision valveless piston pumps. The CO2 was stripped from the seawater and moved into a carrier gas, using a newly developed continuous-flow-through CO2 extractor. A mass flow controller was used to assure a precise flow rate of the carrier gas. The CO2 concentration was then determined with a nondispersive infrared gas analyzer. This analyzer achieved a time-resolution of as good as 1 min. In field experiments on a shallow reef flat of Shiraho (Ishigaki Island, Southwest Japan), the analyzer detected short-term, yet extreme, variations in CT which manual sampling missed. Analytical values obtained by the analyzer on the boat were compared with those determined by potentiometric titration with a closed cell in a laboratory: CT(flow-through) = 0.980 x CT(titration) + 38.8 with r2 = 0.995 (n = 34; September 1998).

SELECTION OF CITATIONS
SEARCH DETAIL