Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674850

ABSTRACT

The trafficking of transient receptor potential (TRP) channels to the plasma membrane and the release of calcitonin gene-related peptide (CGRP) from trigeminal ganglion neurons (TGNs) are implicated in some aspects of chronic migraines. These exocytotic processes are inhibited by cleavage of SNAREs with botulinum neurotoxins (BoNTs); moreover, type A toxin (/A) clinically reduces the frequency and severity of migraine attacks but not in all patients for unknown reasons. Herein, neonatal rat TGNs were stimulated with allyl isothiocyanate (AITC), a TRPA1 agonist, and dose relationships were established to link the resultant exocytosis of CGRP with Ca2+ influx. The CGRP release, quantified by ELISA, was best fit by a two-site model (EC50 of 6 and 93 µM) that correlates with elevations in intracellular Ca2+ [Ca2+]i revealed by time-lapse confocal microscopy of fluo-4-acetoxymethyl ester (Fluo-4 AM) loaded cells. These signals were all blocked by two TRPA1 antagonists, HC-030031 and A967079. At low [AITC], [Ca2+]i was limited because of desensitisation to the agonist but rose for concentrations > 0.1 mM due to a deduced non-desensitising second phase of Ca2+ influx. A recombinant BoNT chimera (/DA), which cleaves VAMP1/2/3, inhibited AITC-elicited CGRP release to a greater extent than SNAP-25-cleaving BoNT/A. /DA also proved more efficacious against CGRP efflux evoked by a TRPV1 agonist, capsaicin. Nerve growth factor (NGF), a pain-inducing sensitiser of TGNs, enhanced the CGRP exocytosis induced by low [AITC] only. Both toxins blocked NGF-induced neuropeptide secretion and its enhancement of the response to AITC. In conclusion, NGF sensitisation of sensory neurons involves TRPA1, elevated Ca2+ influx, and CGRP exocytosis, mediated by VAMP1/2/3 and SNAP-25 which can be attenuated by the BoNTs.


Subject(s)
Botulinum Toxins , Transient Receptor Potential Channels , Rats , Animals , Calcitonin Gene-Related Peptide/pharmacology , Calcitonin Gene-Related Peptide/metabolism , Vesicle-Associated Membrane Protein 1/metabolism , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Botulinum Toxins/metabolism , Sensory Receptor Cells/metabolism , Transient Receptor Potential Channels/metabolism , TRPA1 Cation Channel/metabolism
2.
Toxins (Basel) ; 14(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-35202143

ABSTRACT

Chimeras of botulinum neurotoxin (BoNT) serotype A (/A) combined with /E protease might possess improved analgesic properties relative to either parent, due to inheriting the sensory neurotropism of the former with more extensive disabling of SNAP-25 from the latter. Hence, fusions of /E protease light chain (LC) to whole BoNT/A (LC/E-BoNT/A), and of the LC plus translocation domain (HN) of /E with the neuronal acceptor binding moiety (HC) of /A (BoNT/EA), created previously by gene recombination and expression in E. coli., were used. LC/E-BoNT/A (75 units/kg) injected into the whisker pad of rats seemed devoid of systemic toxicity, as reflected by an absence of weight loss, but inhibited the nocifensive behavior (grooming, freezing, and reduced mobility) induced by activating TRPV1 with capsaicin, injected at various days thereafter. No sex-related differences were observed. c-Fos expression was increased five-fold in the trigeminal nucleus caudalis ipsi-lateral to capsaicin injection, relative to the contra-lateral side and vehicle-treated controls, and this increase was virtually prevented by LC/E-BoNT/A. In vitro, LC/E-BoNT/A or /EA diminished CGRP exocytosis from rat neonate trigeminal ganglionic neurons stimulated with up to 1 µM capsaicin, whereas BoNT/A only substantially reduced the release in response to 0.1 µM or less of the stimulant, in accordance with the /E protease being known to prevent fusion of exocytotic vesicles.


Subject(s)
Analgesics/pharmacology , Botulinum Toxins, Type A/pharmacology , Capsaicin/pharmacology , Neurotoxins/pharmacology , Sensory Receptor Cells/drug effects , Animals , Animals, Newborn , Behavior, Animal/drug effects , Calcitonin Gene-Related Peptide/metabolism , Female , Male , Pain/chemically induced , Pain/drug therapy , Pain/metabolism , Rats, Sprague-Dawley , Sensory Receptor Cells/metabolism , Synaptosomal-Associated Protein 25/metabolism , Trigeminal Ganglion/cytology
3.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055082

ABSTRACT

Nerve growth factor (NGF) is known to intensify pain in various ways, so perturbing pertinent effects without negating its essential influences on neuronal functions could help the search for much-needed analgesics. Towards this goal, cultured neurons from neonatal rat trigeminal ganglia-a locus for craniofacial sensory nerves-were used to examine how NGF affects the Ca2+-dependent release of a pain mediator, calcitonin gene-related peptide (CGRP), that is triggered by activating a key signal transducer, transient receptor potential vanilloid 1 (TRPV1) with capsaicin (CAP). Measurements utilised neurons fed with or deprived of NGF for 2 days. Acute re-introduction of NGF induced Ca2+-dependent CGRP exocytosis that was inhibited by botulinum neurotoxin type A (BoNT/A) or a chimera of/E and/A (/EA), which truncated SNAP-25 (synaptosomal-associated protein with Mr = 25 k) at distinct sites. NGF additionally caused a Ca2+-independent enhancement of the neuropeptide release evoked by low concentrations (<100 nM) of CAP, but only marginally increased the peak response to ≥100 nM. Notably, BoNT/A inhibited CGRP exocytosis evoked by low but not high CAP concentrations, whereas/EA effectively reduced responses up to 1 µM CAP and inhibited to a greater extent its enhancement by NGF. In addition to establishing that sensitisation of sensory neurons to CAP by NGF is dependent on SNARE-mediated membrane fusion, insights were gleaned into the differential ability of two regions in the C-terminus of SNAP-25 (181-197 and 198-206) to support CAP-evoked Ca2+-dependent exocytosis at different intensities of stimulation.


Subject(s)
Calcitonin Gene-Related Peptide/biosynthesis , Capsaicin/pharmacology , Nerve Growth Factor/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/metabolism , Animals , Botulinum Toxins, Type A/pharmacology , Calcium/metabolism , Calcium Signaling/drug effects , Dose-Response Relationship, Drug , Exocytosis/drug effects , Nerve Growth Factor/pharmacology , Proteolysis , Rats , Synaptosomal-Associated Protein 25/metabolism
4.
J Med Chem ; 60(6): 2245-2256, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28225274

ABSTRACT

K+ channels containing Kv1.1 α subunits, which become prevalent at internodes in demyelinated axons, may underlie their dysfunctional conduction akin to muscle weakness in multiple sclerosis. Small inhibitors were sought with selectivity for the culpable hyper-polarizing K+ currents. Modeling of interactions with the extracellular pore in a Kv1.1-deduced structure identified diaryldi(2-pyrrolyl)methane as a suitable scaffold with optimized alkyl ammonium side chains. The resultant synthesized candidate [2,2'-((5,5'(di-p-topyldiaryldi(2-pyrrolyl)methane)bis(2,2'carbonyl)bis(azanediyl)) diethaneamine·2HCl] (8) selectively blocked Kv1.1 channels (IC50 ≈ 15 µM) recombinantly expressed in mammalian cells, induced a positive shift in the voltage dependency of K+ current activation, and slowed its kinetics. It preferentially inhibited channels containing two or more Kv1.1 subunits regardless of their positioning in concatenated tetramers. In slices of corpus callosum from mice subjected to a demyelination protocol, this novel inhibitor improved neuronal conduction, highlighting its potential for alleviating symptoms in multiple sclerosis.


Subject(s)
Kv1.1 Potassium Channel/antagonists & inhibitors , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/pharmacology , Animals , Cell Line , Corpus Callosum/drug effects , Corpus Callosum/metabolism , Corpus Callosum/pathology , Demyelinating Diseases/drug therapy , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Drug Design , Humans , Kv1.1 Potassium Channel/metabolism , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Potassium Channel Blockers/therapeutic use , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/therapeutic use
5.
Biochem J ; 454(1): 101-8, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23725331

ABSTRACT

Voltage-sensitive neuronal Kv1 channels composed of four α subunits and four associated auxiliary ß subunits control neuronal excitability and neurotransmission. Limited information exists on the combinations of α subunit isoforms (i.e. Kv1.1-1.6) or their positions in the oligomers, and how these affect sensitivity to blockers. It is known that TEA (tetraethylammonium) inhibits Kv1.1 channels largely due to binding a critical tyrosine (Tyr379) in the pore, whereas Val381 at the equivalent location in Kv1.2 makes it insensitive. With the eventual aim of developing blockers for therapeutic purposes, Kv1.1 and 1.2 α subunit genes were concatenated to form combinations representing those in central neurons, followed by surface expression in HEK (human embryonic kidney)-293 cells as single-chain functional proteins. Patch-clamp recordings demonstrated the influences of the ratios and positioning of these α subunits on the biophysical and pharmacological properties of oligomeric K+ channels. Raising the ratio of Kv1.1 to Kv1.2 in Kv1.2-1.2-1.1-1.2 led to the resultant channels being more sensitive to TEA and also affected their biophysical parameters. Moreover, mutagenesis of one or more residues in the first Kv1.2 to resemble those in Kv1.1 increased TEA sensitivity only when it is adjacent to a Kv1.1 subunit, whereas placing a non-interactive subunit between these two diminished susceptibility. The findings of the present study support the possibility of α subunits being precisely arranged in Kv1 channels, rather than being randomly assembled. This is important in designing drugs with abilities to inhibit particular oligomeric Kv1 subtypes, with the goal of elevating neuronal excitability and improving neurotransmission in certain diseases.


Subject(s)
Kv1.1 Potassium Channel/antagonists & inhibitors , Kv1.1 Potassium Channel/chemistry , Kv1.2 Potassium Channel/antagonists & inhibitors , Kv1.2 Potassium Channel/chemistry , Potassium Channel Blockers/pharmacology , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Rats , Stereoisomerism , Xenopus
6.
Blood ; 110(2): 686-94, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17387224

ABSTRACT

FLT3-internal tandem duplications (FLT3-ITDs) comprise a heterogeneous group of mutations in patients with acute leukemias that are prognostically important. To characterize the mechanism of transformation by FLT3-ITDs, we sequenced the juxtamembrane region (JM) of FLT3 from 284 patients with acute leukemias. The length of FLT3-ITDs varied from 2 to 42 amino acids (AAs) with a median of 17 AAs. The analysis of duplicated AAs showed that in the majority of patients, the duplications localize between AAs 591 to 599 (YVDFREYEY). Arginine 595 (R595) within this region is duplicated in 77% of patients. Single duplication of R595 in FLT3 conferred factor-independent growth to Ba/F3 cells and activated STAT5. Moreover, deletion or substitution of the duplicated R595 in 2 FLT3-ITD constructs as well as the deletion of wild-type R595 in FLT3-ITD substantially reduced the transforming potential and STAT5 activation, pointing to a critical role of the positive charge of R595 in stabilizing the active confirmation of FLT3-ITDs. Deletion of R595 in FLT3-WT nearly abrogated the ligand-dependent activation of FLT3-WT. Our data provide important insights into the molecular mechanism of transformation by FLT3-ITDs and show that duplication of R595 is important for the leukemic potential of FLT3-ITDs.


Subject(s)
Arginine , Leukemia/genetics , fms-Like Tyrosine Kinase 3/genetics , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Cell Transformation, Neoplastic/genetics , Female , Gene Duplication , Humans , Male , Middle Aged , Mutagenesis , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...