Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 62(10): 10, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34379096

ABSTRACT

Purpose: In spite of clear differences in tissue function and significance to ocular disease, little is known about how immune responses differ between the retina and uveal tract. To this end we compared the effects of acute systemic inflammation on myeloid cells within the mouse retina, iris-ciliary body, and choroid. Methods: Systemic inflammation was induced in Cx3cr1gfp/gfp and CD11c-eYFP Crb1wt/wtmice by intraperitoneal lipopolysaccharide (LPS). In vivo fundus imaging was performed at two, 24, and 48 hours after LPS, and ocular tissue wholemounts were immunostained and studied by confocal microscopy. Flow cytometry was used to investigate the expression of activation markers (MHC class II, CD80, CD86) on myeloid cell populations at 24 hours. For functional studies, retinal microglia were isolated from LPS-exposed mice and cocultured with naïve OT-II CD4+ T-cells and ovalbumin peptide. T-cell proliferation was measured by flow cytometry and cytokine assays. Results: Systemic LPS altered the density and morphology of retinal microglia; however, retinal microglia did not upregulate antigen presentation markers and failed to stimulate naïve CD4+ T-cell proliferation in vitro. In contrast, uveal tract myeloid cells displayed a phenotype consistent with late-activated antigen-presenting cells at 24 hours. Systemic LPS induced remodeling of myeloid populations within the uveal tract, particularly in the choroid, where dendritic cells were partially displaced by macrophages at 24 hours. Conclusions: The disparate myeloid cell responses in the retina and uveal tract after systemic LPS highlight differential regulation of innate immunity within these tissue environments, observations that underpin and advance our understanding of ocular immune privilege.


Subject(s)
Dendritic Cells/pathology , Inflammation/pathology , Macrophages/pathology , Myeloid Cells/pathology , Retina/pathology , Uvea/pathology , Animals , Dendritic Cells/immunology , Disease Models, Animal , Flow Cytometry , Inflammation/immunology , Inflammation/metabolism , Macrophages/immunology , Mice, Inbred BALB C , Microscopy, Confocal , Myeloid Cells/immunology , Retina/immunology , Uvea/immunology
2.
Glia ; 67(5): 935-949, 2019 05.
Article in English | MEDLINE | ID: mdl-30585356

ABSTRACT

The central nervous system (CNS) is considered to be immune privileged, owing in part to the absence of major histocompatibility (MHC) class II+ cells in the healthy brain parenchyma. However, systemic inflammation can activate microglia to express MHC class II, suggesting that systemic inflammation may be sufficient to mature microglia into functional antigen presenting cells (APCs). We examined the effects of systemic lipopolysaccharide (LPS)-induced inflammation on the phenotype and function of putative APCs within the mouse brain parenchyma, as well as its supporting tissues-the choroid plexus and meninges. Microglia isolated from different regions of the brain demonstrated significant heterogeneity in their ability to present antigen to naïve OT-II CD4+ T cells following exposure to systemic LPS. Olfactory bulb microglia (but not cortical microglia) intimately interacted with T cells in vivo and stimulated T cell proliferation in vitro, albeit in the absence of co-stimulation. In contrast, myeloid cells within the choroid plexus and meninges were immunogenic and upregulated the co-stimulatory molecule CD80 following systemic inflammation. Dural APCs, which clustered around LYVE-1+ lymphatics, were more efficient at stimulating naïve T cell proliferation than choroid plexus APCs, suggesting that the dura may be an under-appreciated site for immune interactions. This study has highlighted the functional diversity of myeloid cells within the sub-compartments of the CNS and its supporting tissues. Furthermore, these findings demonstrate that systemic inflammation can mature selected microglia populations and choroid plexus/meningeal myeloid cells into functional APCs, which may contribute to the pathogenesis of neuroinflammation and neurodegenerative diseases.


Subject(s)
Antigen-Presenting Cells/metabolism , Brain/cytology , Meninges/cytology , Animals , Antigen-Presenting Cells/drug effects , Antigens, CD/genetics , Antigens, CD/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Imaging, Three-Dimensional , Lipopolysaccharides/pharmacology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , Microscopy, Confocal , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...