Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 369, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711012

ABSTRACT

BACKGROUND: The increasing demand for saffron metabolites in various commercial industries, including medicine, food, cosmetics, and dyeing, is driven by the discovery of their diverse applications. Saffron, derived from Crocus sativus stigmas, is the most expensive spice, and there is a need to explore additional sources to meet global consumption demands. In this study, we focused on yellow-flowering crocuses and examined their tepals to identify saffron-like compounds. RESULTS: Through metabolomic and transcriptomic approaches, our investigation provides valuable insights into the biosynthesis of compounds in yellow-tepal crocuses that are similar to those found in saffron. The results of our study support the potential use of yellow-tepal crocuses as a source of various crocins (crocetin glycosylated derivatives) and flavonoids. CONCLUSIONS: Our findings suggest that yellow-tepal crocuses have the potential to serve as a viable excessive source of some saffron metabolites. The identification of crocins and flavonoids in these crocuses highlights their suitability for meeting the demands of various industries that utilize saffron compounds. Further exploration and utilization of yellow-tepal crocuses could contribute to addressing the growing global demand for saffron-related products.


Subject(s)
Carotenoids , Crocus , Flowers , Metabolomics , Crocus/genetics , Crocus/metabolism , Carotenoids/metabolism , Flowers/genetics , Flowers/metabolism , Flavonoids/metabolism , Gene Expression Profiling , Transcriptome , Metabolome
2.
Front Plant Sci ; 13: 834416, 2022.
Article in English | MEDLINE | ID: mdl-35283878

ABSTRACT

Saffron crocus (Crocus sativus) is a male-sterile, triploid flower crop, and source of the spice and colorant saffron. For over three millennia, it was cultivated across the Mediterranean, including ancient Greece, Persia, and other cultures, later spreading all over the world. Despite saffron crocus' early omnipresence, its origin has been the matter of a century-old debate, in terms of area and time as well as parental species contribution. While remnants of the ancient arts, crafts, and texts still provide hints on its origin, modern genetics has the potential to efficiently follow these leads, thus shedding light on new possible lines of descent. In this review, we follow ancient arts and recent genetics to trace the evolutionary origin of saffron crocus. We focus on the place and time of saffron domestication and cultivation, and address its presumed autopolyploid origin involving cytotypes of wild Crocus cartwrightianus. Both ancient arts from Greece, Iran, and Mesopotamia as well as recent cytogenetic and comparative next-generation sequencing approaches point to saffron's emergence and domestication in ancient Greece, showing how both disciplines converge in tracing its origin.

3.
J Plant Physiol ; 258-259: 153387, 2021.
Article in English | MEDLINE | ID: mdl-33636556

ABSTRACT

Metabolic and genomic characteristics of polyamines (PAs) may be associated with the induction of cold tolerance (CT) responses in plants. Characteristics of PAs encoding genes in chickpea (Cicer arietinum L.) and their function under cold stress (CS) are currently unknown. In this study, the potential role of PAs along with the antioxidative defense systems were assessed in two chickpea genotypes (Sel96th11439, cold-tolerant and ILC533, cold-sensitive) under CS conditions. Six days after exposure to CS, the leaf H2O2 content and electrolyte leakage index increased in the sensitive genotype by 47.7 and 59 %, respectively, while these values decreased or remained unchanged, respectively, in the tolerant genotype. In tolerant genotype, the enhanced activity of superoxide dismutase (SOD) (by 50 %) was accompanied by unchanged activities of ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase (CAT) as well as the accumulation of glutathione (GSH) (by 43 %) on the sixth day of CS. Higher levels of putrescine (Put) (322 %), spermidine (Spd) (45 %), spermine (Spm) (69 %) and the highest ratio of Put/(Spd + Spm) were observed in tolerant genotype compared to the sensitive one on the sixth day of CS. Gamma-aminobutyric acid (GABA) accumulation was 74 % higher in tolerant genotype compared to the sensitive one on the sixth day of CS. During CS, the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) increased in tolerant (by 3.02- and 2.46-fold) and sensitive (by 2.51- and 2.8-fold) genotypes, respectively, in comparison with the respective non-stressed plants (normal conditions). The highest activity of DAO and PAO in the tolerant genotype was accompanied by PAs decomposition and a peak in GABA content on the sixth day of CS. The analysis of chickpea genome revealed the presence of five PAs biosynthetic genes, their chromosomal locations, and cis-regulatory elements. A significant increase in transcript levels of arginine decarboxylase (ADC) (24.26- and 7.96-fold), spermidine synthase 1 (SPDS1) (3.03- and 1.53-fold), SPDS2 (5.5- and 1.62-fold) and spermine synthase (SPMS) (3.92- and 1.65-fold) genes was detected in tolerant and sensitive genotypes, respectively, whereas the expression of ornithine decarboxylase (ODC) genes decreased significantly under CS conditions in both genotypes. Leaf chlorophyll and carotenoid contents exhibited declining trends in the sensitive genotype, while these photosynthetic pigments were stable in the tolerant genotype due to the superior performance of defensive processes under CS conditions. Overall, these results suggested the specific roles of putative PAs genes and PAs metabolism in development of effective CT responses in chickpea.


Subject(s)
Antioxidants/metabolism , Cicer/physiology , Cold-Shock Response , Polyamines/metabolism , Cicer/genetics , Cold Temperature , Genotype
4.
J Plant Physiol ; 226: 123-135, 2018 07.
Article in English | MEDLINE | ID: mdl-29758377

ABSTRACT

Cold stress (CS) as one of the unfavorable abiotic tensions proceeds different aspects of plant responses. These responses are generated through CS effects on crucial processes such as photosynthesis, energy metabolism, ROS homeostasis, membrane fluidity and cell wall architecture. As a tolerance response, plants apply proteins in various strategies such as transferring the message of cold entrance named as signaling, producing defensive and protective molecules against the stress and degrading some unfavorable or unnecessary proteins to produce other required ones. A change in one part of these networks can irritate alternations in others. These strategies as acclimation mechanisms are conducted through gene expression reprogramming to provide a new adjusted metabolic homeostasis dependent on the stress severity and duration and plant species. Investigating protein alterations in metabolic pathways and their role in adjusting cellular components from upstream to downstream levels can provide a profound knowledge of plants tolerance mechanism against the damaging effects of CS. In this review, we summarized the activity of some cold-responsive proteins from the perception phase to tolerance response against CS.


Subject(s)
Cold-Shock Response/genetics , Gene Expression Regulation, Plant/physiology , Plant Physiological Phenomena/genetics , Plant Proteins/genetics , Signal Transduction/physiology , Acclimatization , Plant Proteins/metabolism
5.
Plant Physiol Biochem ; 122: 31-39, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29172103

ABSTRACT

The present work aimed to characterize some of the mitochondrial and defense responses involved in tolerance to cold stress (CS) in tolerant (Sel96Th11439) and sensitive (ILC533) chickpea (Cicer arietinum L.) genotypes. During CS, the tolerant genotype prevented the H2O2 accumulation significantly; led to a decrease in electrolyte leakage index (ELI), which was a sign of relative acclimation of this genotype compared to sensitive one. A significant positive correlation between ELI and H2O2 (r0.01 = 0.86) content confirmed these results. Under cold, a significant increase in the alternative oxidase (AOX) activity was observed in tolerant genotype compared to sensitive one. In parallel, the high activity of superoxide dismutase (SOD) accompanied with catalase (CAT) and ascorbate peroxidase (APX) activities and also the extreme amounts of ascorbate and proline certified the active reactive oxygen species (ROS)-scavenging systems. There was a significant negative correlation between damage indices like H2O2 content and the activity of AOX (r0.01 = -0.79) as well as significant positive correlation between AOX activity with CAT (r0.05 = 0.61), SOD (r0.05 = 0.51) and APX activity (r0.05 = 0.52). The increasing succinate dehydrogenase (CaSDH), CaAOX and cytochrome c oxidase (CaCOX) gene expression showed an enhancing response of respiration under CS in tolerant plants compared to sensitive ones. The increasing trend of phosphoenol pyruvate carboxylase (PEPC) activity in tolerant genotype particularly in the sixth day of CS indicated the recovered performance of metabolism pathways. Therefore, the increase of AOX activity along with other defensive mechanisms could be coordinately related to cold tolerance mechanisms in order to alleviate cold-induced oxidative stress in chickpea.


Subject(s)
Cicer/metabolism , Cold-Shock Response , Mitochondria/metabolism , Oxidative Stress , Oxygen Consumption , Oxidoreductases/metabolism , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism
6.
Plant Physiol Biochem ; 111: 39-49, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27907856

ABSTRACT

We evaluated the effect of TiO2 nanoparticles (NPs) on cold tolerance (CT) development in two chickpea (Cicer arietinum L.) genotypes (Sel96Th11439, cold tolerant, and ILC533, cold susceptible) by using cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique during the first and sixth days of cold stress (CS) at 4 °C. Selective amplification by primer combinations generated 4200 transcript-derived fragments (TDFs) while 100 of them (2.62%) were differentially expressed. During CS, 60 differentially expressed TDFs of TiO2 NPs-treated plants were cloned and 10 of them produced successfully readable sequences. These data represented different groups of genes involved in metabolism pathways, cellular defense, cell connections and signaling, transcriptional regulation and chromatin architecture. Two out of 10 TDFs were unknown genes with uncharacterized functions or sequences without homology to known ones. The network-based analysis showed a gene-gene relationship in response to CS. Quantitative reverse-transcriptase polymerase chain reaction (qPCR) confirmed differential expression of identified genes (six out of 10 TDFs) with potential functions in CT and showed similar patterns with cDNA-AFLP results. An increase in transcription level of these TDFs, particularly on the first day of CS, was crucial for developing CT through decreasing electrolyte leakage index (ELI) content in tolerant plants compared to susceptible ones, as well as in TiO2 NPs-treated plants compared to control ones. It could also indicate probable role of TiO2 NPs against CS-induced oxidative stress. Therefore, a new application of TiO2 NPs in CT development is suggested for preventing or controlling the damages in field conditions and increasing crop productivity.


Subject(s)
Amplified Fragment Length Polymorphism Analysis , Cicer/genetics , Cicer/physiology , Cold Temperature , DNA, Complementary/genetics , Nanoparticles/chemistry , Stress, Physiological/drug effects , Titanium/pharmacology , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Cicer/drug effects , Electrolytes/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks , Genes, Plant , Genotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Silver Staining , Stress, Physiological/genetics
7.
J Plant Physiol ; 171(13): 1106-16, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24972025

ABSTRACT

Cold stress affects many plant physiological and biochemical components and induces cascades of alterations in metabolic pathways, amongst them the membrane fatty acid compositions, the activity of antioxidative enzymes and the regulation of gene expression. The present work aimed to characterize the changes of some of these factors in both cold acclimated (CA) and non-acclimated (NA) plants of chickpea (Cicer arietinum L.) to identify the role of the acclimation process in adjusting plant responses to severe cold stress. The results showed an increase in the unsaturated fatty acids (UFAs) ratio compared to saturated fatty acids, which was more obvious in CA plants. Defense enzymes had an important role in CA plants to create greater cold tolerance compared to NA ones in the cases of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) and lipoxygenase (LOX) activities. During cold stress, a high transcription level of CaCAT and CaSOD genes was detected in CA plants, but a low transcription of CaLOX gene was observed in CA plants compared to NA plants, which might have prevented the decline of UFAs (confirmed by double bond index (DBI) data). Moreover, the transcription level of the Carubisco gene, as an energy producing agent, was higher in CA plants than in NA plants and the transcription of the Catubulin gene, as a crucial substance of cell cytoskeleton, showed a decreasing trend in both CA and NA plants, but this decline was greater in NA plants. These responses showed the possible targets of cold stress as chloroplast and signal transduction to balance stress programs. The above results indicate the crucial role of FA compositions in creating cold tolerance in susceptible chickpea plants with possible responsive components and the possible interactions in protein and transcript levels even in facing extreme cold stress.


Subject(s)
Acclimatization , Cicer/physiology , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Stress, Physiological , Antioxidants/metabolism , Catalase/genetics , Catalase/metabolism , Cicer/enzymology , Cicer/genetics , Cold Temperature , Fatty Acids, Unsaturated/metabolism , Lipoxygenase/genetics , Lipoxygenase/metabolism , Oxidation-Reduction , Oxidative Stress , Peroxidase/genetics , Peroxidase/metabolism , Plant Proteins/genetics , Proline/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Seedlings/enzymology , Seedlings/genetics , Seedlings/physiology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...