Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Environ Manage ; 345: 118907, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37666133

ABSTRACT

The semi-continuous anaerobic co-digestion (AcoD) of thermal and thermal-alkali pretreated organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) was studied under varying hydraulic retention times (HRT) and organic loading rates (OLR Three semi-continuous digesters were operated under control (non-pre-treated), thermally pretreated (125 °C), and thermal-alkali pretreated (125°C-3g/L NaOH) conditions at variable OLRs at 2.5, 4.0, 5.1, and 7.6 kgVS/m3.d and corresponding HRTs of 30, 20, 15, and 10 days. The 10 and 43% higher methane yield (0.445 m3/kgVS) and 11 and 57% higher VS removal (52%) was achieved for thermal-alkali pretreated digester at 5.1 kgVS/m3.d OLR over thermally pretreated (0.408 m3/kgVS, 45% VS removal) and control digesters (0.310 m3/kgVS, 33% VS removal), respectively. Thermal and thermal-alkali digesters failed on increasing the OLR to 7.6 kgVS/m3.d, whereas the control digester becomes upset at 5.1 kgVS/m3.d OLR. The metagenomic study revealed that Firmicutes, Bacteroidetes, Chloroflexi, Euryarchaeota, Proteobacteria, and Actinobacteria were the predominant bacterial population, whereas Methanosarcina and Methanothrix dominated the archaeal community. Energy balance analysis revealed that thermal alkali pretreatment showed the highest positive energy balance of 114.6 MJ/ton with an energy ratio of 1.25 compared with thermally pretreated (81.5 MJ/ton) and control samples (-46.9 MJ/ton). This work pave the way for scaleup of both thermal and thermal-alkali pre-treatment at 125 °C to realize the techno-economic and energy potential of the process.


Subject(s)
Microbiota , Solid Waste , Anaerobiosis , Alkalies , Methane , Digestion
2.
Environ Res ; 238(Pt 2): 117195, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37758117

ABSTRACT

Advanced steam explosion pretreatment, i.e., the Thermal hydrolysis process (THP) is applied mainly to improve the sludge solubilization and subsequent methane yield in the downstream anaerobic digestion (AD) process. However, the potential of THP in pretreating the high solids retention time (SRT) sludges, mitigating the risk of emerging organic micropollutants and effects on anaerobic microbiome in digester remains unclear. In this study, sludge from a sequencing batch reactor (SBR) system operating at a SRT of 40 days was subjected to THP using a 5 L pilot plant at the temperature ranges of 120-180 °C for 30-120 min. The effect of THP on organics solubilization, methane yield, organic micropollutant removal, and microbial community dynamics was studied. The highest methane yield of 507 mL CH4/g VSadded and volatile solids (VS) removal of 54% were observed at 160°C- 30min THP condition, i.e., 4.1 and 2.6 times higher than the control (123 mL CH4/gVSadded, 20.7%), respectively. The experimental values of hydrolysis coefficient and methane yield have been predicted using Modified Gompertz, First order, and Logistics models. The observed values fitted well with all three models showing an R2 value between 0.96 and 1.0. THP pretreated sludges showed >80% removal of Trimethoprim, Enrofloxacin, Ciprofloxacin, and Bezafibrate. However, Carbamazepine, 17α-ethinylestradiol, and Progesterone showed recalcitrant behavior, resulting in less than 50% removal. Microbial diversity analysis showed the dominance of Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes, collectively accounting for >70-80% of bacterial reads. They are mainly responsible for the fermentation of complex biomolecules like polysaccharides, proteins, and lipids. The THP-mediated anaerobic digestion of sludge shows better performance than the control digestion, improved methane yield, higher VS and micropollutants removal, and a diverse microbiome in the digester.


Subject(s)
Sewage , Steam , Sewage/microbiology , Anaerobiosis , Methane , Fermentation , Hydrolysis , Bioreactors
3.
Chemosphere ; 318: 137945, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36702406

ABSTRACT

The pinnacle of all the efforts of nutrient removal is practically put-down the moment biological cells are lysed, hydrolyzed or digested causing subsequent reappearance of assimilated nitrogen and phosphorus in any biological process. While sludge reduction requires high SRT, the enhanced phosphorus assimilative uptake demands low SRT. A novel reactor configuration for enhanced sludge and phosphorus removal was put to test by incorporating a side stream anaerobic reactor to an Anaerobic-Anoxic-Aerobic (A2O) SBR with a pre-anoxic chamber and an influent receiving inlet anaerobic reactor. The reactor was operated at the average and lowest range of prevailing carbon/phosphorus (C/P) ratio of 50 and 15 in the sewage. The phosphorus enrichment was 0.0469-0.135 mgTP/mgVSS resulting in 1.76-5.05-fold increase from cellular content by virtue of maintaining sludge recycle from SBR aeration tank to side stream anaerobic reactor from 3.78 to 9.78 (average 4.4-8.2) gVSS/gVSS present in the reactor. However, the sludge was also reduced from 3% to 51% on an average basis during the same recirculation regime. This novel configuration consists of an inlet anaerobic reactor, one pre-anoxic chamber and one intermittent oxic anoxic reaction SBR and a side stream anaerobic reactor. The first anaerobic reactor at inlet followed by pre-anoxic chamber was provided for increased ortho-p released and nitrification respectively and a side stream anaerobic reactor for sludge reduction through sludge fasting mechanism. The EBPR and lesser sludge growth were two conflicting parameters reconciled to the extent that if sludge recycled up to 6.41 gVSS/gVSS the sludge growth would be reduced by 25% and phosphorus enrichment could be attained up to 3.46 times the stoichiometric value. Any further recirculation would reduce the sludge further but at the expense of enhanced phosphorus uptake as released phosphorus from side stream anaerobic reactor also recycled back to main SBR causing looping and at more than 6.41gVSSrecycled/gVSS it nullified the enhanced effect.


Subject(s)
Bioreactors , Sewage , Nitrification , Phosphorus , Nitrogen , Waste Disposal, Fluid
4.
Environ Res ; 216(Pt 1): 114436, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36183791

ABSTRACT

Agro-waste having lignocellulosic biomass is considered most effective (heating value 16 MJ/kg) for energy production through anaerobic digestion (AD). However, recalcitrant lignocellulosic fraction in agro-waste obstructs its biotransformation and is a rate-limiting step of the process. This study investigated the effects of hydrothermal and thermal-alkaline pretreatment on anaerobic co-digestion of wheat straw (WS). The hydrothermal pretreatment of WS revealed that 60 min was the best pretreatment time to achieve the highest substrate solubilization. It was employed for thermal-alkali pretreatment at variable temperatures and NaOH doses. Thermal-alkali pretreatment at 125°C-7% NaOH shows the highest (34%) biogas yield of 662 mL/gVS, followed by 646 mL/gVS biogas yield at 150°C-1% NaOH assay (31% higher) over control. Although the 125°C-7% NaOH assay achieved the highest biogas yield, the 150°C-1% NaOH assay was found more feasible considering the cost of a 6% higher chemical used in the earlier assay. The thermal-alkali pretreatment was observed to reduce the formation of recalcitrant compounds (HMF, Furfural) and increase the buffering capacity of the slurry over hydrothermal pretreatment. Principal component analysis (PCA) of the various pretreatment and AD operational parameters was carried out to study their in-depth correlation. Moreover, a kinetic study of the experimental data was performed to observe the biodegradation trend and compare it with the Modified Gompertz (MG) and First Order (FO) models.


Subject(s)
Biofuels , Triticum , Triticum/chemistry , Anaerobiosis , Alkalies , Methane , Sodium Hydroxide , Digestion
5.
Environ Res ; 214(Pt 2): 113856, 2022 11.
Article in English | MEDLINE | ID: mdl-35850293

ABSTRACT

Sewage sludge is rich source of carbon, nutrients, and trace elements and can be subjected to proper treatment before disposal to fulfill government legislation and protect receiving environments. Anaerobic digestion (AD) is a well-adopted technology for stabilizing sewage sludge and recovering energy-rich biogas and nutrient-rich digestate. However, a slow hydrolysis rate limits the biodegradability of sludge. In the present study we have attempted to explain the potential of thermal hydrolysis to enhance anaerobic digestion of sewage sludge. Thermal pretreatment improves biodegradability and recycling of the sludge as an excellent energy and nutrients recovery source at reasonable capital (CAPEX) and operational (OPEX) costs. Other pretreatments like conventional (below/above 100 °C), temperature-phased anaerobic digestion (TPAD), microwave and chemically mediated thermal pretreatment have also been accounted. This review provides a holistic overview of sludge's characterization and value-added properties, various techniques used for sludge pretreatment for resource recovery, emphasizing conventional and advanced thermal pretreatment, challenges in scale-up of these technologies, and successful commercialization of thermal pretreatment techniques.


Subject(s)
Biofuels , Sewage , Anaerobiosis , Hydrolysis , Methane , Sewage/chemistry , Temperature , Waste Disposal, Fluid/methods
6.
Environ Res ; 212(Pt C): 113382, 2022 09.
Article in English | MEDLINE | ID: mdl-35568237

ABSTRACT

In this study, four batch assays were performed to ensure the synergic effects of co-digestion and find out the best inoculums to substrate ratio (ISR), carbon to nitrogen ratio (C:N), and total solid (TS) percentage in sequence. The co-digestion of three feedstocks had a 20% higher biogas yield (416 mL/gVS added) than mono-digestion with 21% volatile solids (VS) degradation. The ISR of 2 leads to the highest biogas yield (431 mL/gVS added) and VS removal (30.3%) over other ISRs (0.5, 1.0, 2.5) studied. The lower ISR (<2) tended to have lower pH due to insufficient anaerobes inside the digester. The C:N 35 (with ISR 2) yielded 17.4% higher biogas (443.5 mL/gVS added) than mono-digestion and was the highest among the C:N ratios studied with 36.6% VS removal. The VFA, alkalinity, and pH in C:N 35 assay were more stable than in other C:N assays. In the fourth batch assay, varying TS% (5, 7.5, 10, 12.5) were used with optimized ISR (2) and C:N (35). Higher TS% (10 and 12.5) had some lag phase but later achieved higher biogas production. The 12.5% TS assay achieved 80% higher biogas yield (679 mL/gVS added) over mono-digestion, i.e., highest among the TS% studied, with 48% VS removal. In conclusion, co-digestion of mixed feedstocks with ISR 2, C:N 35, and TS 12.5% could degrade almost half of the substrate available for biodegradation. Further biodegradation may require pretreatment of the recalcitrant WS. Modified Gompertz, first-order, transference, and logistic models were used for kinetic study and curve fitting of experimental data. For the optimized batch assays, the estimated specific rate constants were 0.08, 0.12, 0.083, and 0.084. The data fits well in all the models, with the coefficient of discrimination (R2) ranging from 0.882 to 0.999.


Subject(s)
Biofuels , Refuse Disposal , Anaerobiosis , Animals , Bioreactors , Cattle , Digestion , Food , Manure , Methane , Triticum
7.
Bioresour Technol ; 357: 127345, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35609752

ABSTRACT

Energy sustainability is one of the critical parameters to be studied for the successful application of pretreatment processes. This study critically analyzes the energy efficiency of different energy-demanding sludge pretreatment techniques. Conventional thermal pretreatment of sludge (∼5% total solids, TS) produced 244 mL CH4/gTS, which could result in a positive energy balance of 2.6 kJ/kg TS. However, microwave pretreatment could generate only 178 mL CH4/gTS with a negative energy balance of -15.62 kJ/kg TS. In CAMBI process, the heat requirements can be compensated using exhaust gases and hot water from combined heat and power, and electricity requirements are managed by the use of cogeneration. The study concluded that <100 â„ƒ pretreatment effectively enhances the efficiency of anaerobic digestion and shows positive energy balance over microwave and ultrasonication. Moreover, microwave pretreatment has the highest global warming potential than thermal and ultrasonic pretreatments.


Subject(s)
Methane , Sewage , Anaerobiosis , Animals , Feasibility Studies , Life Cycle Stages , Waste Disposal, Fluid/methods
8.
Sci Total Environ ; 829: 154621, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35306085

ABSTRACT

Thermal-chemical pre-treatment has proven to facilitate the solubilization of organics and improvement in biogas generation from the organic fraction of municipal solid waste (OFMSW). However, the production of recalcitrant is inevitable when OFMSW is pretreated at high temperatures and alkali dosage. This study develops a strategy to use Fe3+ to reduce the formation of recalcitrant compounds, i.e., 5-HydroxyMethyl Furfural (5-HMF), furfurals, and humic acids (HA) during thermal-alkali pre-treatment. It was postulated that the formation of the recalcitrant compound during pre-treatment can be reduced by Fe3+ dosing to oxidize intermediates of Maillard reactions. A decrease in 5-HMF (45-49%) and furfurals (54-66%) was observed during Fe3+ (optimum dose: 10 mg/L) mediated thermal-alkali pre-treatment owing to the Lewis acid behavior of FeCl3. The Fe3+ mediated assays show a substantial improvement in VS removal (28%) and biogas yield, i.e., 31% (292 mL/gVSadded) in 150 °C + 3 g/L NaOH, 34% (316 mL/gVSadded) in 175 °C + 3 g/L NaOH, and 36% (205 mL/gVSadded) in 200 °C + 3 g/L NaOH assays, over their respective controls (no Fe3+ dosing). The reducing property of Fe3+ rendered a low ORP (-345 mV) in the system than control, which is beneficial to the anaerobic microbiome. Electrical conductivity (EC) also shows a three-fold increase in Fe3+ mediated assays over control, promoting direct interspecies electron transfer (DIET) amongst microbes involved in the electrical syntrophy. The score plot and loading plots from principal component analysis (PCA) showed that the results obtained by supplementing 10 mg/L Fe3+ at 150, 175, and 200 °C were significantly different. The correlation of the operational parameters was also mutually correlated. This work provides a techno-economically and environmentally feasible option to mitigate the formation of recalcitrant compounds and enhance biogas production in downstream AD by improving the degradability of pretreated substrate.


Subject(s)
Biofuels , Refuse Disposal , Alkalies , Anaerobiosis , Biofuels/analysis , Bioreactors , Hydrolysis , Methane , Refuse Disposal/methods , Sodium Hydroxide , Solid Waste/analysis
9.
Chemosphere ; 291(Pt 1): 132682, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34710464

ABSTRACT

High-temperature thermal pretreatment alone or in conjugation with chemical pretreatment (highly acidic or alkaline) produced recalcitrant compounds, which inhibits the anaerobic digestion (AD) process performance. This study aims to develop a strategy to use carbon-based conductive materials to mitigate the recalcitrant toxicity and enhance the methane generation in the downstream AD. The formation of recalcitrant compounds, mainly the furan derivatives, i.e., furfural and 5-HydroxyMethyl furfurals (5-HMF) during thermo-chemical pretreatment of OFMSW at 150 °C, 175 °C, 200 °C with 3 g/L-NaOH dose, and the alleviation of their inhibitory effects by adding 25 g/L of each of granular activated carbon (GAC) and granular biochar (GBC) during mesophilic AD were studied. The addition of conductive materials resulted in the highest biogas yield of 462 mL/gVSadded (GAC) and 449 mL/gVSadded (GBC) for 175°C-3g/L-NaOH pretreatment, which was >45% higher over control. The highest improvement of >65% in biogas yield was observed for 200°C-3g/L-NaOH pretreatment despite the lower biogas yield. The conductive materials amended digester shows a significant decrease in the 5-HMF and furfurals concertation. The highest reduction in 5-HMF (44%) and furfural (51%) concentrations were observed for 200°C-3g/L-NaOH pretreatment, and 25 g/L GBC amended tests. The score plots from the principal component analysis (PCA) of the characterization of the digestate showed that the data were significant, whereas the loading plots depicted the correlation of different experimental parameters studied (like fate of recalcitrant, biogas yield and other parameters post AD of OFMSW when aided with conductive materials). Application of regression models in all the batch assays depicted that a lag phase of 2-4 days was observed in Modified Gompertz Model (MGM), 4-5 days in Logistic Model (LM) and a rapid hydrolysis was proven with the value of hydrolysis coefficient being between 0.003 and 0.029 from the first-order (FO) model.


Subject(s)
Refuse Disposal , Solid Waste , Anaerobiosis , Biofuels/analysis , Bioreactors , Methane , Solid Waste/analysis
10.
Chemosphere ; 291(Pt 3): 132930, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34800498

ABSTRACT

Increasing energy demands and environmental issues have stressed the importance of sustainable methods of energy production. Anaerobic digestion (AD) of the biodegradable waste, i.e., agricultural residues, organic fraction of municipal solid waste (OFMSW), sewage sludge, etc., results in the production of biogas, which is a sustainable and cost feasible technique that reduces the dependence on fossil fuels and also overcomes the problems associated with biomass waste management. To solubilize the organic matter and enhance the susceptibility of hardly biodegradable fraction (i.e., lignocellulosic) for hydrolysis and increase methane production, several pretreatments, including physical, chemical, biological, and hybrid methods have been studied. However, these pretreatment methods under specific operating conditions result in the formation of recalcitrant compounds, such as sugars (xylose, Xylo-oligomers), organic acids (acetic, formic, levulinic acids), and lignin derivatives (poly and mono-phenolic compounds), causing significant inhibitory effects on anaerobic digestion. During the scaling up of these techniques from laboratory to industrial level, the focus on managing inhibitory compounds formed during pretreatment is envisaged to increase because of the need to use recalcitrant feedstocks in anaerobic digestion to increase biogas productivity. Therefore, it is crucial to understand the production mechanism of inhibitory compounds during pretreatment and work out the possible detoxification methods to improve anaerobic digestion. This paper critically reviews the earlier works based on the formation of recalcitrant compounds during feedstocks pretreatment under variable conditions, and their detrimental effects on process performance. The technologies to mitigate recalcitrant toxicity are also comprehensively discussed.


Subject(s)
Bioreactors , Methane , Anaerobiosis , Biofuels/analysis , Biomass , Sewage , Solid Waste/analysis
12.
Chemosphere ; 282: 131136, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34470172

ABSTRACT

Organic fraction of municipal solid waste (OFMSW) is an ideal substrate for biogas production; however, complex chemical structure and being heterogeneous obstruct its biotransformation in anaerobic digestion (AD) process. Thermal pre-treatment of OFMSW has been suggested to enhance the solubilization and improve the anaerobic digestibility of OFMSW. This paper critically and comprehensively reviews the characterization of OFMSW (physical, chemical, bromatological) and enlightens the valuable properties of OFMSW for waste valorization. In following sections, the advantages and limitations of AD of OFMSW are discussed, followed by the application of temperature phased AD, and various thermal pre-treatments, i.e., conventional thermal, microwave, and thermo-chemical for high rate bioenergy transformation. Effects of pre-treatment on COD, proteins, sugars and VS solubilization, and biogas yield are discussed. Formation of recalcitrant during thermal pre-treatment and the effect on anaerobic digestibility are considered. Full scale application, and techno-economic and environmental feasibility of thermal pre-treatment methods are also revealed. This review concluded that thermophilic (55 °C) and temperature phased anaerobic digestion, temperature phased anaerobic digestion, TPAD (55 + 37 °C) processes shows effective and stable performance at low HRTs and high OLRs and achieved higher methane yield than mesophilic digestion. The thermal pre-treatment at a lower temperature (120 °C) improves the net energy yield. However, high-temperature pre-treatment (>150 °C) result in decreased biogas yield and even lower than the non-pre-treated OFMSW, although a high degree of COD solubilization. The OFMSW solubilization in terms of COD, proteins, and sugars cannot accurately reflect thermal/hybrid pre-treatments' potential. Thus, substrate pre-treatment followed by anaerobic digestibility of pretreated substrate together can evaluate the actual effectiveness of thermal pre-treatment of OFMSW.


Subject(s)
Refuse Disposal , Solid Waste , Anaerobiosis , Bioreactors , Methane , Solid Waste/analysis
13.
J Environ Manage ; 292: 112741, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34015615

ABSTRACT

A long-term feasibility analysis of a 100 ton per day mechanical biological treatment (MBT) plant for municipal solid waste (MSW) valorization and material and energy recovery was carried out. It involves the material recovery and segregation stage (MRSS), organic extraction (pulping), thermophilic anaerobic digestion (AD), composting, effluent treatment plant (ETP), and biogas genset stages producing: 11.90% recyclables, 33% refused derived fuel (RDF), 5% compost of total waste received, 70 m3/day recyclable water and 0.435 MWh/day electricity. The biogas and methane yield were 0.535 and 0.350 m3/kg VSadded (avg.), respectively, with 40% VS removal (avg total solids (TS) 10%). Less than 3% (inert) of total waste received was subjected to landfill disposal. The MBT plant's revenue generation is 995 US$ per day/148 tons ($ 6.72/ton) waste processed. The gross OPEX is 24 US$/ton making the net OPEX of 17 US$/ton (minus revenue), which could be considered as the excellent OPEX for MSW based MBT plants as per global benchmarks. Further, local usage of RDF can significantly reduce the OPEX to 14 US$/ton, as almost 16% of the OPEX goes towards RDF disposal to cement companies located at a distance of 200-500 km from the MBT plant site. As per LCA study, the total GHG emissions have been calculated to be -25.68 tons CO2 eq./100 tons MSW. The negative emissions result from the export of electricity, compost, and RDF as well as recycling of paper and plastic products. Our study presents a cutting-edge scenario of all-inclusive recycling, recovery, and reuse loop of MSW direly required for accomplishing a circular economy.


Subject(s)
Refuse Disposal , Solid Waste , India , Recycling , Solid Waste/analysis , Waste Disposal Facilities
14.
Sci Total Environ ; 773: 145152, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33940720

ABSTRACT

In the recent decades, the role of wastewater treatment plants has been entrenched for the dissemination of antibiotic resistant bacteria into the environment. The present study explores the dynamics of earthworms-microorganisms interactions involved in the high treatment efficacy of vermifiltration technology along with reduction of antibiotic resistant bacteria (ARB). This study is the first of its kind to investigate the performance efficacy of vermifilter (VF) for clinical laboratory wastewater treatment. The results of the study showed that earthworms and VF associated microbial community had a significant effect on Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) reduction (78-85%), coliforms and pathogen removal (>99.9%) and caused a significant shift in the prevalence pattern of ARB. Molecular profiling of resistance causing genes such as ESBL (blaSHV, blaTEM and blaCTX-M), MRSA (mec-A) and Colistin (mcr-1) confirmed the probable mechanisms behind the resistance pattern. The microbial community diversity in the influent, earthworm's coelomic fluid and gut and filter media layers associated with the VF assists in the formation of biofilm, which helps in the removal of pathogens from the wastewater. This biofilm formation further results in a paradigm shift in the resistance profile of ARB and ARG, specifically most effective against drugs, targeting cell wall and protein synthesis inhibition such as Ampicillin, Ticarcillin, Gentamicin and Chloramphenicol. These findings further validate vermifiltration technology as a sustainable and natural treatment technology for clinical laboratory wastewater, specifically for the removal of pathogens and antibiotic resistance.


Subject(s)
Oligochaeta , Water Purification , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Laboratories , Oligochaeta/genetics
15.
Waste Manag ; 124: 17-25, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33596535

ABSTRACT

Management of agro-waste is a major challenge globally due to inefficient disposal techniques, which concominantly leads pollution and loss of renewable bioenergy. Anaerobic digestion of agro-waste is one of the ways to tackle this problem but hindered by the recalcitrant nature of agro-waste. This study investigated the effect of granular activated carbon (GAC) and granular biochar (GBC) addition to enhance the thermophilic anaerobic co-digestion of wheat husk and sewage sludge. The conductive materials (particle size: 2-5 mm) were added separately at five different concentrations: 10, 20, 30, 40, 50 g/Linoculum. The findings revealed that samples amended with GAC and GBC at 20 g/L dosage had the highest biogas yield of 263 and 273 mL/gVSadded, respectively, corresponding to 22 and 27% higher yield than the control. Additionally, a shorter lag phase was observed in both cases compared to the Control. However, the GBC amended samples showed relatively stable biogas production compared to GAC and consistent results regarding pH, alkalinity, total volatile fatty acids, and soluble chemical oxygen demand. The preliminary techno-economic analysis indicates that addition of GAC or GBC may not be feasible and require other innovative engineered solutions for the addition of conductive materials. This study confirms that GAC and GBC amendments enhance the biogas productivity and process stability in anaerobic digestion of recalcitrant agro-waste under the high-temperature regime and calls for further research in this direction.


Subject(s)
Bioreactors , Sewage , Anaerobiosis , Biofuels/analysis , Biological Oxygen Demand Analysis , Digestion , Methane , Sewage/analysis
16.
Environ Res ; 195: 110831, 2021 04.
Article in English | MEDLINE | ID: mdl-33587948

ABSTRACT

The present work summarizes the major research findings related to wastewater-based epidemiology (WBE) study of COVID-19 and puts forward a conceptual framework, termed as "Surveillance of Wastewater for Early Epidemic Prediction (SWEEP)" for implementation of WBE. SWEEP framework is likely to tackle few practical issues related to WBE and simultaneously proposes refinements to the approach for better outcome and efficiency to save precious lives around the globe. It is observed that the present pandemic offers an opportunity for SWEEP to get included in routine urban water management to put the humankind at front to stop such pandemic in future or at least be prepared to fight against it. With global collaboration, SWEEP can be fine-tuned to meet diverse needs, making the present and future generations resilient to future viral outbreaks. Recent WBE studies conducted to check for the presence of SARS-CoV-2 in wastewater revealed that raw sewage samples tested positive to PCR-based assays while the treated samples showed absence of viral titers. Moreover, the lockdown had a positive impact on decreasing the viral loading in sewage. The proposed SWEEP protocol has an advantage over testifying individuals for predicting the stage of pandemic.


Subject(s)
COVID-19 , Communicable Disease Control , Humans , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
17.
Transl Psychiatry ; 10(1): 415, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257661

ABSTRACT

NMDA autoantibody encephalitis presenting as schizophrenia suggests the possible role of adaptive cell-mediated immunity in idiopathic schizophrenia. However, to our knowledge there have been no trials of the immune-suppressant methotrexate in schizophrenia. We tested if low-dose methotrexate as used in the treatment of systemic autoimmune disorders would be tolerable and effective in people with schizophrenia in a feasibility study. Ninety-two participants within 5 years of schizophrenia diagnosis were recruited from inpatient and outpatient facilities in Karachi, Pakistan. They were randomised to receive once weekly 10-mg oral methotrexate (n = 45) or matching placebo (n = 47) both with daily 5-mg folic acid, in addition to treatment as usual for 12 weeks. There were eight dropouts per group. Side effects were non-significantly more common in those on methotrexate and were not severe. One person developed leukopenia. Positive symptom scores improved more in those receiving methotrexate than placebo (ß = -2.5; [95% CI -4.7 to -0.4]), whereas negative symptoms were unaffected by treatment (ß = -0.39; [95% CI -2.01 to 1.23]). There were no immune biomarkers but methotrexate did not affect group mean leucocyte counts or C-reactive protein. We conclude that further studies are feasible but should be focussed on subgroups identified by advances in neuroimmune profiling. Methotrexate is thought to work in autoimmune disorders by resetting systemic regulatory T-cell control of immune signalling; we show that a similar action in the CNS would account for otherwise puzzling features of the immuno-pathogenesis of schizophrenia.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Immunosuppressive Agents , Methotrexate/therapeutic use , Psychotic Disorders/drug therapy , Schizophrenia/drug therapy
18.
Br Dent J ; 229(9): 570, 2020 11.
Article in English | MEDLINE | ID: mdl-33188314
19.
Chemosphere ; 184: 636-641, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28624741

ABSTRACT

Sludge reduction by physico-chemical methods results in the buildup of chemicals, which may require further treatment. Owing these reasons various biologically sustainable methods of sludge reduction including the application of high oxygenation have been successfully tested. Experiments on actual sewage in two lab-scale sequencing batch reactors (SBRs) were conducted under normal (1.5-2.5 mgDO/L) and high dissolved oxygen (DO) (HDO: 3-6.5 mgDO/L) regimes. It was observed that microorganism allocated substrate between maintenance and growth in the form of maintenance coefficient. Which could be induced by endogenous respiration owing to high solids retention time (SRT), predation on bacteria, chemical toxicity, adverse environment, and viral attack on bacteria. The wastewater treatment process may experience one or more maintenance inducing factors; nevertheless, high SRT and prevailing environmental conditions are imminent and thus considered as primary maintenance (mp), while remaining are classified as secondary maintenance (ms). Average yield coefficient reduction at HDO was 32.7% and 28.2% compared to stoichiometric and at normal DO, respectively. The observed primary and secondary maintenance was 0.11gCOD/gVSS.d (±0.01) at an SRT of 25.2 d (±2.0) and 0.096 g 0.1 gCOD/gVSS.d (±0.045) at an SRT of 24.2 d (±3.6d), respectively. The results obtained under the study are not as precise as on pure culture and defined substrate, nevertheless, it gives an idea that how stress factors inducing maintenance need to be addressed more seriously and objectively while managing our efforts on sludge reduction.


Subject(s)
Oxygen/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Bacteria/growth & development , Biological Oxygen Demand Analysis , Bioreactors/microbiology
20.
Environ Monit Assess ; 188(11): 609, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27718090

ABSTRACT

Phthalates are endocrine-disrupting chemicals which affect endocrine system by bio-accumulation in aquatic organisms and produce adverse health effects in aquatic organisms as well as human beings, when come in contact. Present study focuses on occurrence and removal of two phthalates: diethylphthalate (DEP) and dibutylphthalate (DBP) in two full-scale wastewater treatment plants (WWTPs) i.e. sewage treatment plants (STPs) based on well-adopted technologies, activated sludge process (ASP) and sequencing batch reactor (SBR).Gas chromatography-mass spectrometry (GC-MS) analysis was performed for both wastewater and sludge sample for determination and identification of the concentration of these compounds in both STPs by monitoring the STPs for 9 months. It was observed that the concentration of DEP was less than DBP in the influent of ASP and SBR. Average concentrations of DEP and DBP in sludge sample of ASP were found to be 2.15 and 2.08 ng/g, whereas in SBR plant, these values were observed as 1.71 and 2.01 ng/g, respectively. Concerning the removal efficiency of DEP, SBR and ASP plants were found effective with removal efficiency of 91.51 and 91.03 %, respectively. However, in the case of DBP, SBR showed lower removal efficiency (85.42 %) as compared to ASP (92.67 %). Comparative study of both plants proposed that in ASP plant, DBP reduction was higher than the SBR. Fourier transformation infrared (FTIR) analysis also confirmed the same result of sludge analysis for both STPs. Sludge disposal studied with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and thermo-gravimetric analysis (TGA) techniques confirmed that sludge of both STPs have high calorific value and can be used as fuel to make fuel-briquettes and bottom ash to make firebricks.


Subject(s)
Dibutyl Phthalate/analysis , Endocrine Disruptors/analysis , Phthalic Acids/analysis , Sewage/analysis , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Humans , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...