Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Trop Med Int Health ; 29(5): 365-376, 2024 May.
Article in English | MEDLINE | ID: mdl-38480005

ABSTRACT

BACKGROUND: In northern Tanzania, Q fever, spotted fever group (SFG) rickettsioses, and typhus group (TG) rickettsioses are common causes of febrile illness. We sought to describe the prevalence and risk factors for these zoonoses in a pastoralist community. METHODS: Febrile patients ≥2 years old presenting to Endulen Hospital in the Ngorongoro Conservation Area were enrolled from August 2016 through October 2017. Acute and convalescent blood samples were collected, and a questionnaire was administered. Sera were tested by immunofluorescent antibody (IFA) IgG assays using Coxiella burnetii (Phase II), Rickettsia africae, and Rickettsia typhi antigens. Serologic evidence of exposure was defined by an IFA titre ≥1:64; probable cases by an acute IFA titre ≥1:128; and confirmed cases by a ≥4-fold rise in titre between samples. Risk factors for exposure and acute case status were evaluated. RESULTS: Of 228 participants, 99 (43.4%) were male and the median (interquartile range) age was 27 (16-41) years. Among these, 117 (51.3%) had C. burnetii exposure, 74 (32.5%) had probable Q fever, 176 (77.2%) had SFG Rickettsia exposure, 134 (58.8%) had probable SFG rickettsioses, 11 (4.8%) had TG Rickettsia exposure, and 4 (1.8%) had probable TG rickettsioses. Of 146 participants with paired sera, 1 (0.5%) had confirmed Q fever, 8 (5.5%) had confirmed SFG rickettsioses, and none had confirmed TG rickettsioses. Livestock slaughter was associated with acute Q fever (adjusted odds ratio [OR] 2.54, 95% confidence interval [CI] 1.38-4.76) and sheep slaughter with SFG rickettsioses case (OR 4.63, 95% CI 1.08-23.50). DISCUSSION: Acute Q fever and SFG rickettsioses were detected in participants with febrile illness. Exposures to C. burnetii and to SFG Rickettsia were highly prevalent, and interactions with livestock were associated with increased odds of illness with both pathogens. Further characterisation of the burden and risks for these diseases is warranted.


Subject(s)
Q Fever , Rickettsia Infections , Spotted Fever Group Rickettsiosis , Humans , Tanzania/epidemiology , Q Fever/epidemiology , Male , Risk Factors , Female , Adult , Adolescent , Prevalence , Spotted Fever Group Rickettsiosis/epidemiology , Spotted Fever Group Rickettsiosis/microbiology , Young Adult , Middle Aged , Child , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Animals , Rickettsia/immunology , Rickettsia/isolation & purification , Child, Preschool , Coxiella burnetii/immunology , Aged , Zoonoses/microbiology
2.
Microbiol Resour Announc ; 13(2): e0093023, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38289053

ABSTRACT

Brucella abortus causes infections in humans and livestock. Bacterial isolates are challenging to obtain, and very little is known about the genomic epidemiology of this species in Africa. Here, we report the complete genome sequence of a Brucella abortus isolate cultured from a febrile human in northern Tanzania.

3.
PLoS Negl Trop Dis ; 17(12): e0011855, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38117858

ABSTRACT

BACKGROUND: Leptospirosis is suspected to be a major cause of illness in rural Tanzania associated with close contact with livestock. We sought to determine leptospirosis prevalence, identify infecting Leptospira serogroups, and investigate risk factors for leptospirosis in a rural area of Tanzania where pastoralist animal husbandry practices and sustained livestock contact are common. METHODS: We enrolled participants at Endulen Hospital, Tanzania. Patients with a history of fever within 72 hours, or a tympanic temperature of ≥38.0°C were eligible. Serum samples were collected at presentation and 4-6 weeks later. Sera were tested using microscopic agglutination testing with 20 Leptospira serovars from 17 serogroups. Acute leptospirosis cases were defined by a ≥four-fold rise in antibody titre between acute and convalescent serum samples or a reciprocal titre ≥400 in either sample. Leptospira seropositivity was defined by a single reciprocal antibody titre ≥100 in either sample. We defined the predominant reactive serogroup as that with the highest titre. We explored risk factors for acute leptospirosis and Leptospira seropositivity using logistic regression modelling. RESULTS: Of 229 participants, 99 (43.2%) were male and the median (range) age was 27 (0, 78) years. Participation in at least one animal husbandry practice was reported by 160 (69.9%). We identified 18 (7.9%) cases of acute leptospirosis, with Djasiman 8 (44.4%) and Australis 7 (38.9%) the most common predominant reactive serogroups. Overall, 69 (30.1%) participants were Leptospira seropositive and the most common predominant reactive serogroups were Icterohaemorrhagiae (n = 20, 29.0%), Djasiman (n = 19, 27.5%), and Australis (n = 17, 24.6%). Milking cattle (OR 6.27, 95% CI 2.24-7.52) was a risk factor for acute leptospirosis, and milking goats (OR 2.35, 95% CI 1.07-5.16) was a risk factor for Leptospira seropositivity. CONCLUSIONS: We identified leptospirosis in approximately one in twelve patients attending hospital with fever from this rural community. Interventions that reduce risks associated with milking livestock may reduce human infections.


Subject(s)
Leptospira , Leptospirosis , Humans , Male , Animals , Cattle , Female , Tanzania/epidemiology , Prevalence , Leptospirosis/veterinary , Goats , Risk Factors , Serogroup , Fever , Livestock , Seroepidemiologic Studies , Antibodies, Bacterial
4.
BMC Vet Res ; 19(1): 226, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37904151

ABSTRACT

BACKGROUND: Brucellosis is a contagious zoonosis caused by bacteria of the genus Brucella. While the disease has been eradicated in most developed countries, it remains endemic in sub-Saharan Africa where access to reliable diagnostics is limited. African giant pouched rats (Cricetomys ansorgei) have been trained to detect the scent of Mycobacterium tuberculosis to increase case detection in sub-Saharan Africa. Given the similar diagnostic challenges facing brucellosis and tuberculosis, we explored the feasibility of training African giant pouched rats to detect Brucella. RESULTS: After 3 months of training, rats reliably identified cultured Brucella, achieving an average sensitivity of 93.56% (SD = 0.650) and specificity of 97.65% (SD = 0.016). Rats readily generalized to novel, younger Brucella cultures that presumably generated a weaker volatile signal and correctly identified at least one out of three fecal samples spiked with Brucella culture during a final test of feasibility. DISCUSSION: To our knowledge, these experiments are the first to demonstrate Brucella emits a unique odor profile that scent detection animals can be trained to identify. Importantly, cultured E. coli samples were included throughout training and test to ensure the rats learned to specifically identify Brucella bacteria rather than any bacteria in comparison to bacteria-free culture medium. E. coli controls therefore served a crucial function in determining to what extent Brucella abortus emits a unique odor signature. Further research is needed to determine if a Brucella-specific volatile signature is present within clinical samples. If confirmed, the present results suggest trained rats could serve as a valuable, novel method for the detection of Brucella infection.


Subject(s)
Brucellosis , Rats , Animals , Odorants , Brucella abortus , Escherichia coli , Muridae , Brucellosis/diagnosis , Brucellosis/veterinary
5.
One Health Outlook ; 5(1): 13, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37817289

ABSTRACT

INTRODUCTION: Brucellosis is a serious community health problem and endemic disease in Tanzania in both humans and animals. Frontline health workers (FHWs) play a vital role in reporting and hence prevent and control brucellosis in rural settings. This study aims to evaluate the effect of awareness training to frontline health workers and use of electronic technology (e- technology) on reporting of brucellosis cases. METHODS: A quasi-experimental design was implemented in two pastoral communities in eastern part of Tanzania with one as control and another as treatment involving 64 FHWs who were purposively selected from May 2020 to December 2020. A total of 32 FHWs from treatment pastoral community were purposively selected for awareness training, rapid diagnosis using Rose Bengal test (RBT) and use of electronic technology (AfyaData app) for brucellosis reporting while nothing was done in control community. Before and after training information about their knowledge, attitude and practices were collected from all participants using a structured questionnaires uploaded in the mobile phone powered by AfyaData application. Blood samples were collected from 141 febrile patients attending the selected facilities in treatment community. Serum obtained from collected blood were analyzed using RBT and Competitive Enzyme Linked Immunosorbent Assay (c-ELISA) for brucellosis screening and confirmatory, respectively. Results from this analysis were reported back to the health facility using AfyaData app. Chi-square was used to analyze categorical variables and t-test and/Anova test was used to assess the effectiveness of the intervention. RESULTS: Results revealed that before the training majority of the participants were ignorant about brucellosis, although they had good attitude towards brucellosis prevention. Participant's awareness, practice and attitude increased significantly (p = 0.003, p = 0.001, p = 0.032) respectively, after the intervention. Total of 17(12.1%) patients were positive on RBT and four (2.8%) were confirmed by c-ELISA. AfyaData app was proven to provide quick reports regarding brucellosis in the study area. CONCLUSION: The training program was effective in increasing the level of knowledge and practice about brucellosis. Electronic based technology (AfyaData app) improved the reporting of brucellosis cases. There is a need for the use of electronic based technology to improve timely management of brucellosis in pastoral communities. Also, continuous training on FHWs regarding the disease is needed to improved their awareness and practices.

6.
Acta Trop ; 242: 106902, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36948234

ABSTRACT

Rotavirus group A genomic characterization is critical for understanding the mechanisms of rotavirus diversity, such as reassortment events and possible interspecies transmission. However, little is known about the genetic diversity and genomic relationship of the rotavirus group A strains circulating in Tanzania. The genetic and genomic relationship of RVA genotypes was investigated in children under the age of five. A total of 169 Fecal samples were collected from under-five with diarrhea in Mbeya, Iringa and Morogoro regions of Tanzania. The RVA were screened in children under five with diarrhea using reverse transcription PCR for VP7 and VP4, and the G and P genotypes were determined using Sanger dideoxynucleotide cycle sequencing. Whole-genome sequencing was performed on selected genotypes. The overall RVA rate was 4.7% (8/169). The G genotypes were G3 (7/8) and G6 (1/8) among the 8 RVA positives, while the P genotypes were P[6] (4/8) and P[8] (2), and the other two were untypeable. G3P[6] and G3P[8] were the identified genotype combinations. The genomic analysis reveals that the circulating G3P[8] and G3P[6] isolates from children under the age of five with diarrhea had a DS-1-like genome configuration (I2-R2-C2-M2-axe-N2-T2-E2-H2). The phylogenic analysis revealed that all 11 segments of G3P[6] were closely related to human G3P[6] identified in neighboring countries such as Uganda, Kenya, and other African countries, implying that G3P[6] strains descended from a common ancestor. Whereas, G3P[8] were closely related to previously identified equine-like G3P[P8] from Kenya, Japan, Thailand, Brazil, and Taiwan, implying that this strain was introduced rather than reassortment events. We discovered amino acid differences at antigenic epitopes and N-linked glycosylation sites between the wild type G3 and P[8] compared to vaccine strains, implying that further research into the impact of these differences on vaccine effectiveness is warranted. The phylogenic analysis of VP7 also identified a bovine-like G6. For the first time in Tanzania, we report the emergence of novel equine-like G3 and bovine-like G6 RVA strains, highlighting the importance of rotavirus genotype monitoring and genomic analysis of representative genotypes.


Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus , Humans , Animals , Child , Cattle , Horses , Rotavirus Infections/epidemiology , Tanzania/epidemiology , Genome, Viral , Rotavirus/genetics , Diarrhea/epidemiology , Genomics , Genotype , Phylogeny , Genetic Variation
7.
Heliyon ; 8(11): e11750, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36468104

ABSTRACT

Animals have been identified as the potential reservoirs of rotavirus group A (RVA) for human infection. However, very little is known regarding the genotype and genomic profiles of circulating RVA in Tanzanian piglets. The rotavirus genetic diversity and genome analysis was assessed among piglets from Southern highlands and Eastern Tanzania. A total of 241 faecal samples were collected from piglets in the regions of Mbeya, Iringa, and Morogoro. RVA was detected and genotyped using reverse transcription polymerase chain reaction (RT-PCR). Sanger dideoxynucleotide cycle sequencing of the viral protein (VP) 4 and VP7 genes was afterwards performed to confirm the RT-PCR results. Selected genotypes were subjected to whole genome sequencing. The overall prevalence of RVA was 35.26% (85/241) in piglets (30.58% in Mbeya, 43.75% in Iringa and 31.16% in Morogoro). Upon genotyping, the G genotypes were G4 (26), G9 (10), G3 (6), G5 (3) and the remaining 40 were untypeable, while the P genotype, were P[6] (35), P[13] (3) and the remaining 47 were untypeable. The G4P[6] were the predominant genotype followed by G3P[6], G3P[13], G4P[13] and G5P[13] were most common genotypes combinations. On phylogenetic analysis, G4 was grouped to lineage V, sublineages VIIa and VIIc, G9 to lineage I, G5 to lineage II, G3 to lineage IV, P[6] to lineage V and sublineage Ic and the P[13] to lineage IV. We revealed amino acid differences between the circulating G4 and the G4 in the ProSystems RCE vaccine used in pigs. The whole genome reveals genomic constellation of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1, G5-P[x]-I5-R1-C1-M1-A8-N1-Tx-E1-H1, G3/G4-P[13]/P[6]-Ix-R1-C1-M1-A8-N1-T1-E1-H1, G3-P[6]-Ix-R1-C1-M1-A8-N1-Tx-E1-H1 and G9-P[x]-Ix-R1-C1-M1-Ax-N1-Tx-E1-H1. The VP7 gene of G9, the VP4 gene of P[6] and NSP4 (E1) gene of some genotypes clustered together and closely related to humans origin or porcine-human reassortant strains with nucleotide similarities ranging from 97.90% to 99.74% from neighboring countries, implying possibility intragenogroup reassortment and interspecies transmission. The higher strain diversity observed within the gene segments highlight the importance of genomic analysis and continuous monitoring of RVA genotypes. Further research is needed to determine the risk factors associated with RVA infection in Tanzanian pigs in order to properly design a control program.

8.
PLoS One ; 17(9): e0274490, 2022.
Article in English | MEDLINE | ID: mdl-36107832

ABSTRACT

The straw-colored fruit bat (Eidolon helvum) is a pteropodid whose conservation is crucial for maintaining functional connectivity of plant populations in tropical Africa. Land conversion has pushed this species to adapt to roosting in urban centers across its range. These colonies often host millions of individuals, creating intensive human-bat contact interfaces that could facilitate the spillover of coronaviruses shed by these bats. A better understanding of coronavirus dynamics in these roosts is needed to identify peak times of exposure risk in order to propose evidence-based management that supports safe human-bat coexistence, as well as the conservation of this chiropteran. We studied the temporal patterns of coronavirus shedding in E. helvum, by testing thousands of longitudinally-collected fecal samples from two spatially distant urban roosts in Ghana and Tanzania. Shedding of coronaviruses peaked during the second part of pup weaning in both roosts. Assuming that coronavirus shedding is directly related to spillover risk, our results indicate that exposure mitigation should target reducing contact between people and E. helvum roosts during the pup "weaning" period. This recommendation can be applied across the many highly-populated urban sites occupied by E. helvum across Africa.


Subject(s)
Chiroptera , Coronavirus Infections , Coronavirus , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Ghana , Humans , Seasons
9.
Pastoralism ; 12(1): 28, 2022.
Article in English | MEDLINE | ID: mdl-35761971

ABSTRACT

Brucellosis is an infectious zoonotic disease considered as a threat to public health and pastoralist livelihoods. Symptoms of the disease can lead to gender-specific ailments such as abortions in women and orchitis in men. Pastoralists and their families are at high risk of contracting the disease. Access to health information reinforces existing knowledge and contributes to disease prevention. However, in developing countries, interventions for knowledge sharing on zoonotic diseases predominantly target men. This study aimed to describe mechanisms of knowledge production and transfer on brucellosis according to gender, by assessing the way knowledge affects behaviours of pastoral communities. A community-based cross-sectional survey was conducted among a pastoral community (PC) of the Folon region in north-west Côte d'Ivoire. The study included transhumant pastoralists, sedentary livestock owners, shepherds and their wives. By using mixed methods, 26 semi-structured interviews were conducted, and 320 questionnaires were completed. Statistical analysis with chi-square (χ 2) comparison tests was performed to compare variables between men and women. Findings were interpreted through the concept of specialisation of the social exclusion theory. We found that gender influences access to information on brucellosis and transfer of knowledge on brucellosis appeared gender-biased, especially from veterinarians towards men in the community. The social labour division and interventions of veterinarians through awareness reinforce the knowledge gap on brucellosis between men and women. Men and women consume raw milk, whilst only men in general handle animal discharges with bare hands. To improve the control of brucellosis, knowledge on best practice should be shared with pastoral communities using the One Health approach that encourages mutual learning. Innovative strategies based on gender daily tasks such as safe dairy processing by women and safe animal husbandry to expand their herd for men can be the entry point for the prevention of brucellosis.

10.
BMC Genomics ; 23(1): 306, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35428239

ABSTRACT

BACKGROUND: Cattle are considered to be the most desirable livestock by small scale farmers. In Africa, although comprehensive genomic studies have been carried out on cattle, the genetic variations in indigenous cattle from Nigeria have not been fully explored. In this study, genome-wide analysis based on genotyping-by-sequencing (GBS) of 193 Nigerian cattle was used to reveal new insights on the history of West African cattle and their adaptation to the tropical African environment, particularly in sub-Saharan region.  RESULTS: The GBS data were evaluated against whole-genome sequencing (WGS) data and high rate of variant concordance between the two platforms was evident with high correlated genetic distance matrices genotyped by both methods suggestive of the reliability of GBS applicability in population genetics. The genetic structure of Nigerian cattle was observed to be homogenous and unique from other African cattle populations. Selection analysis for the genomic regions harboring imprints of adaptation revealed genes associated with immune responses, growth and reproduction, efficiency of feeds utilization, and heat tolerance. Our findings depict potential convergent adaptation between African cattle, dogs and humans with adaptive genes SPRY2 and ITGB1BP1 possibly involved in common physiological activities. CONCLUSION: The study presents unique genetic patterns of Nigerian cattle which provide new insights on the history of cattle in West Africa based on their population structure and the possibility of parallel adaptation between African cattle, dogs and humans in Africa which require further investigations.


Subject(s)
Genome , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Genetics, Population , Nigeria , Reproducibility of Results , Selection, Genetic
11.
One Health Outlook ; 4(1): 1, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983693

ABSTRACT

BACKGROUND: Brucellosis an important zoonotic disease worldwide, which frequently presents as an undifferentiated febrile illness with otherwise varied and non-specific clinical manifestations. Despite its importance, there are few reports on its awareness among frontline health workers. This study aimed at assessing the baseline knowledge, attitude and practice (KAP) related to detection and management of brucellosis among frontline health workers (FHWs) namely; healthcare workers (HWs) and community health workers (CHWs). METHODS: A cross-sectional study was conducted from December 2019 to January 2020 in Kilosa and Chalinze districts of Tanzania. Data on demographic characteristics, knowledge, attitude and practices regarding brucellosis were collected from the study participants using a structured questionnaire. Interviews were conducted with 32 HWs and 32 CHWs who were systematically selected in study districts. Chi square/fisher Exact was used to assess the association between sociodemographic variables and those related to knowledge, attitude and practices. RESULTS: Overall, a total of 30 (93.8%) HWs and nine (28.1%) CHWs from the study districts heard about brucellosis, with (34.4%) of HWs having knowledge about the causative organism. Overall, knowledge showed almost half (46.9%) HWs and (28.1%) CHWs were aware of the symptoms, clinical signs, diagnosis and control regarding brucellosis. Knowledge difference was statistically significant with HWs' age (p = 0.016). Almost half (46.9%) HWs and less than quarter (12.5%) CHWs had good practices regarding brucellosis control. Almost three quarters (71.9%) of HWs and (21.9%) CHWs had positive attitude regarding brucellosis control; overall attitude was statistically significant with CHWs age (p = 0.028) and education level (p = 0.024). Lack of awareness and unavailability of diagnostic tools were the main challenges faced by FHWs in the two districts. CONCLUSION: The majority of participants were not aware of human brucellosis. Moreover, their overall knowledge was inadequate and the common practices were diagnostic tools, and adequate knowledge to manage brucellosis cases. These findings highlight the need to strengthen frontline health workers knowledge, practices and diagnostic capacities related to brucellosis.

12.
Am J Trop Med Hyg ; 106(2): 494-503, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34929672

ABSTRACT

Q fever and spotted fever group rickettsioses (SFGR) are common causes of severe febrile illness in northern Tanzania. Incidence estimates are needed to characterize the disease burden. Using hybrid surveillance-coupling case-finding at two referral hospitals and healthcare utilization data-we estimated the incidences of acute Q fever and SFGR in Moshi, Kilimanjaro, Tanzania, from 2007 to 2008 and from 2012 to 2014. Cases were defined as fever and a four-fold or greater increase in antibody titers of acute and convalescent paired sera according to the indirect immunofluorescence assay of Coxiella burnetii phase II antigen for acute Q fever and Rickettsia conorii (2007-2008) or Rickettsia africae (2012-2014) antigens for SFGR. Healthcare utilization data were used to adjust for underascertainment of cases by sentinel surveillance. For 2007 to 2008, among 589 febrile participants, 16 (4.7%) of 344 and 27 (8.8%) of 307 participants with paired serology had Q fever and SFGR, respectively. Adjusted annual incidence estimates of Q fever and SFGR were 80 (uncertainty range, 20-454) and 147 (uncertainty range, 52-645) per 100,000 persons, respectively. For 2012 to 2014, among 1,114 febrile participants, 52 (8.1%) and 57 (8.9%) of 641 participants with paired serology had Q fever and SFGR, respectively. Adjusted annual incidence estimates of Q fever and SFGR were 56 (uncertainty range, 24-163) and 75 (uncertainty range, 34-176) per 100,000 persons, respectively. We found substantial incidences of acute Q fever and SFGR in northern Tanzania during both study periods. To our knowledge, these are the first incidence estimates of either disease in sub-Saharan Africa. Our findings suggest that control measures for these infections warrant consideration.


Subject(s)
Q Fever/epidemiology , Spotted Fever Group Rickettsiosis/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Delivery of Health Care/statistics & numerical data , Female , Humans , Incidence , Infant , Male , Middle Aged , Tanzania/epidemiology , Young Adult
13.
PLoS Negl Trop Dis ; 15(8): e0009630, 2021 08.
Article in English | MEDLINE | ID: mdl-34428205

ABSTRACT

BACKGROUND: Brucellosis is a neglected zoonosis endemic in many countries, including regions of sub-Saharan Africa. Evaluated diagnostic tools for the detection of exposure to Brucella spp. are important for disease surveillance and guiding prevention and control activities. METHODS AND FINDINGS: Bayesian latent class analysis was used to evaluate performance of the Rose Bengal plate test (RBT) and a competitive ELISA (cELISA) in detecting Brucella spp. exposure at the individual animal-level for cattle, sheep, and goats in Tanzania. Median posterior estimates of RBT sensitivity were: 0.779 (95% Bayesian credibility interval (BCI): 0.570-0.894), 0.893 (0.636-0.989), and 0.807 (0.575-0.966), and for cELISA were: 0.623 (0.443-0.790), 0.409 (0.241-0.644), and 0.561 (0.376-0.713), for cattle, sheep, and goats, respectively. Sensitivity BCIs were wide, with the widest for cELISA in sheep. RBT and cELISA median posterior estimates of specificity were high across species models: RBT ranged between 0.989 (0.980-0.998) and 0.995 (0.985-0.999), and cELISA between 0.984 (0.974-0.995) and 0.996 (0.988-1). Each species model generated seroprevalence estimates for two livestock subpopulations, pastoralist and non-pastoralist. Pastoralist seroprevalence estimates were: 0.063 (0.045-0.090), 0.033 (0.018-0.049), and 0.051 (0.034-0.076), for cattle, sheep, and goats, respectively. Non-pastoralist seroprevalence estimates were below 0.01 for all species models. Series and parallel diagnostic approaches were evaluated. Parallel outperformed a series approach. Median posterior estimates for parallel testing were ≥0.920 (0.760-0.986) for sensitivity and ≥0.973 (0.955-0.992) for specificity, for all species models. CONCLUSIONS: Our findings indicate that Brucella spp. surveillance in Tanzania using RBT and cELISA in parallel at the animal-level would give high test performance. There is a need to evaluate strategies for implementing parallel testing at the herd- and flock-level. Our findings can assist in generating robust Brucella spp. exposure estimates for livestock in Tanzania and wider sub-Saharan Africa. The adoption of locally evaluated robust diagnostic tests in setting-specific surveillance is an important step towards brucellosis prevention and control.


Subject(s)
Brucella/immunology , Brucellosis/veterinary , Cattle Diseases/epidemiology , Goat Diseases/epidemiology , Sheep Diseases/epidemiology , Animals , Bayes Theorem , Brucellosis/epidemiology , Brucellosis/transmission , Cattle , Cattle Diseases/transmission , Enzyme-Linked Immunosorbent Assay , Female , Goat Diseases/transmission , Goats , Latent Class Analysis , Male , Rose Bengal , Seroepidemiologic Studies , Serologic Tests , Sheep , Sheep Diseases/transmission , Tanzania
14.
Sci Rep ; 11(1): 8881, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893352

ABSTRACT

Brucellosis, caused by several species of the genus Brucella, is a zoonotic disease that affects humans and animal species worldwide. Information on the Brucella species circulating in different hosts in Kenya is largely unknown, thus limiting the adoption of targeted control strategies. This study was conducted in multi-host livestock populations in Kenya to detect the circulating Brucella species and assess evidence of host-pathogen associations. Serum samples were collected from 228 cattle, 162 goats, 158 sheep, 49 camels, and 257 humans from Narok and Marsabit counties in Kenya. Information on age, location and history of abortion or retained placenta were obtained for sampled livestock. Data on age, gender and location of residence were also collected for human participants. All samples were tested using genus level real-time PCR assays with primers specific for IS711 and bcsp31 targets for the detection of Brucella. All genus positive samples (positive for both targets) were further tested with a speciation assay for AlkB and BMEI1162 targets, specific for B. abortus and B. melitensis, respectively. Samples with adequate quantities aggregating to 577 were also tested with the Rose Bengal Test (RBT). A total of 199 (33.3%) livestock and 99 (38.5%) human samples tested positive for genus Brucella. Animal Brucella PCR positive status was positively predicted by RBT positive results (OR = 8.3, 95% CI 4.0-17.1). Humans aged 21-40 years had higher odds (OR = 2.8, 95% CI 1.2-6.6) of being Brucella PCR positive compared to the other age categories. The data on detection of different Brucella species indicates that B. abortus was detected more often in cattle (OR = 2.3, 95% CI 1.1-4.6) and camels (OR = 2.9, 95% CI 1.3-6.3), while B. melitensis was detected more in sheep (OR = 3.6, 95% CI 2.0-6.7) and goats (OR = 1.7, 95% CI 1.0-3.1). Both B. abortus and B. melitensis DNA were detected in humans and in multiple livestock host species, suggesting cross-transmission of these species among the different hosts. The detection of these two zoonotic Brucella species in humans further underpins the importance of One Health prevention strategies that target multiple host species, especially in the multi-host livestock populations.


Subject(s)
Brucella/genetics , Brucellosis/epidemiology , Host-Pathogen Interactions , Livestock , Adult , Animals , Brucellosis/microbiology , Ecosystem , Female , Humans , Kenya/epidemiology , Male , Molecular Epidemiology , Young Adult
15.
Sci Rep ; 11(1): 5480, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750848

ABSTRACT

The control of brucellosis across sub-Saharan Africa is hampered by the lack of standardized testing and the use of tests with poor performance. This study evaluated the performance and costs of serological assays for human brucellosis in a pastoralist community in northern Tanzania. Serum collected from 218 febrile hospital patients was used to evaluate the performance of seven index tests, selected based on international recommendation or current use. We evaluated the Rose Bengal test (RBT) using two protocols, four commercial agglutination tests and a competitive enzyme-linked immunosorbent assay (cELISA). The sensitivity, specificity, positive predictive value, negative predictive value, Youden's index, diagnostic accuracy, and per-sample cost of each index test were estimated. The diagnostic accuracy estimates ranged from 95.9 to 97.7% for the RBT, 55.0 to 72.0% for the commercial plate tests, and 89.4% for the cELISA. The per-sample cost range was $0.69-$0.79 for the RBT, $1.03-$1.14 for the commercial plate tests, and $2.51 for the cELISA. The widely used commercial plate tests performed poorly and cost more than the RBT. These findings provide evidence for the public health value of discontinuing the use of commercial agglutination tests for human brucellosis in Tanzania.


Subject(s)
Brucellosis/diagnosis , Adolescent , Adult , Aged , Agglutination Tests/economics , Brucella/isolation & purification , Brucellosis/blood , Brucellosis/epidemiology , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay/economics , Female , Humans , Infant , Male , Middle Aged , Sensitivity and Specificity , Serologic Tests/economics , Tanzania/epidemiology , Young Adult
16.
PLoS One ; 16(1): e0245283, 2021.
Article in English | MEDLINE | ID: mdl-33481859

ABSTRACT

Mali has a high pastoral potential with diverse coexisting production systems ranging from traditional (nomadic, transhumant, sedentary) to commercial (fattening and dairy production) production systems. Each of those systems is characterised by close interactions between animals and humans, increasing the potential risk of transmission of zoonotic diseases. The nature of contact network suggests that the risks may vary according to species, production systems and behaviors. However, the study of the link between small ruminants and zoonotic diseases has received limited attention in Mali. The objective of this study was to assess brucellosis seroprevalence and determine how the husbandry systems and human behaviour expose animal and human to infection risk. A cross-sectional study using cluster sampling was conducted in three regions in Mali. Blood was collected from 860 small ruminants. The sera obtained were analysed using both Rose Bengal and cELISA tests. In addition, 119 farmers were interviewed using a structured questionnaire in order to identify the characteristics of farms as well as the risk behaviors of respondents. Husbandry systems were dominated by agro-pastoral systems followed by pastoral systems. The commercial farms (peri-urban and urban) represent a small proportion. Small ruminant individual seroprevalence was 4.1% [2.8-5.6% (95% CI)]. Herd seroprevalence was estimated at 25.2% [17.7-33.9% (95% CI)]. Peri-urban farming system was more affected with seroprevalence of 38.1% [18.1-61.5 (95% CI)], followed by pastoral farming system (24.3% [11.7-41.2 (95% CI)]). Identified risk behaviors of brucellosis transmission to animals were: exchange of reproductive males (30.2%); improper disposal of placentas in the farms (31.1%); and keeping aborted females in the herd (69.7%). For humans, risk factors were: close and prolonged contact with animals (51.2%); consumption of unpasteurized dairy products (26.9%); and assisting female animals during delivery without any protection (40.3%). This study observed a high seroprevalence of brucellosis in small ruminants and also identified risky practices that allow cross transmission between the two populations. This calls for control strategy using a multi-sectoral and multidimensional approach.


Subject(s)
Animal Husbandry/methods , Brucellosis/epidemiology , Zoonoses/epidemiology , Adolescent , Adult , Animals , Antibodies, Bacterial/blood , Brucellosis/pathology , Brucellosis/transmission , Cross-Sectional Studies , Dairy Products/microbiology , Farmers/psychology , Female , Humans , Male , Mali , Middle Aged , Risk Factors , Risk-Taking , Ruminants , Surveys and Questionnaires , Young Adult , Zoonoses/pathology , Zoonoses/transmission
17.
Clin Infect Dis ; 73(7): e1570-e1578, 2021 10 05.
Article in English | MEDLINE | ID: mdl-32777036

ABSTRACT

BACKGROUND: Salmonella Enteritidis and Salmonella Typhimurium are major causes of bloodstream infection and diarrheal disease in East Africa. Sources of human infection, including the role of the meat pathway, are poorly understood. METHODS: We collected cattle, goat, and poultry meat pathway samples from December 2015 through August 2017 in Tanzania and isolated Salmonella using standard methods. Meat pathway isolates were compared with nontyphoidal serovars of Salmonella enterica (NTS) isolated from persons with bloodstream infections and diarrheal disease from 2007 through 2017 from Kenya by core genome multi-locus sequence typing (cgMLST). Isolates were characterized for antimicrobial resistance, virulence genes, and diversity. RESULTS: We isolated NTS from 164 meat pathway samples. Of 172 human NTS isolates, 90 (52.3%) from stool and 82 (47.7%) from blood, 53 (30.8%) were Salmonella Enteritidis sequence type (ST) 11 and 62 (36.0%) were Salmonella Typhimurium ST313. We identified cgMLST clusters within Salmonella Enteritidis ST11, Salmonella Heidelberg ST15, Salmonella Typhimurium ST19, and Salmonella II 42:r:- ST1208 that included both human and meat pathway isolates. Salmonella Typhimurium ST313 was isolated exclusively from human samples. Human and poultry isolates bore more antimicrobial resistance and virulence genes and were less diverse than isolates from other sources. CONCLUSIONS: Our findings suggest that the meat pathway may be an important source of human infection with some clades of Salmonella Enteritidis ST11 in East Africa, but not of human infection by Salmonella Typhimurium ST313. Research is needed to systematically examine the contributions of other types of meat, animal products, produce, water, and the environment to nontyphoidal Salmonella disease in East Africa.


Subject(s)
Salmonella typhimurium , Sepsis , Animals , Anti-Bacterial Agents , Cattle , Diarrhea/epidemiology , Humans , Meat , Multilocus Sequence Typing , Salmonella enteritidis/genetics , Salmonella typhimurium/genetics , Tanzania
18.
J Trop Med ; 2020: 6586182, 2020.
Article in English | MEDLINE | ID: mdl-33014074

ABSTRACT

In endemic African areas, such as Tanzania, Brucella spp. cause human febrile illnesses, which often go unrecognized and misdiagnosed, resulting in delayed diagnosis, underdiagnosis, and underreporting. Although rapid and affordable point-of-care tests, such as the Rose Bengal test (RBT), are available, acceptance and adoption of these tests at the national level are hindered by a lack of local diagnostic performance data. To address this need, evidence on the diagnostic performance of RBT as a human brucellosis point-of-care test was reviewed. The review was initially focused on studies conducted in Tanzania but was later extended to worldwide because few relevant studies from Tanzania were identified. Databases including Web of Science, Embase, MEDLINE, and World Health Organization Global Index Medicus were searched for studies assessing the diagnostic performance of RBT (sensitivity and specificity) for detection of human brucellosis, in comparison to the reference standard culture. Sixteen eligible studies were identified and reviewed following screening. The diagnostic sensitivity (DSe) and specificity (DSp) of RBT compared to culture as the gold standard were 87.5% and 100%, respectively, in studies that used suitable "true positive" and "true negative" patient comparison groups and were considered to be of high scientific quality. Diagnostic DSe and DSp of RBT compared to culture in studies that also used suitable "true positive" and "true negative" patient comparison groups but were considered to be of moderate scientific quality varied from 92.5% to 100% and 94.3 to 99.9%, respectively. The good diagnostic performance of RBT combined with its simplicity, quickness, and affordability makes RBT an ideal (or close to) stand-alone point-of-care test for early clinical diagnosis and management of human brucellosis and nonmalarial fevers in small and understaffed health facilities and laboratories in endemic areas in Africa and elsewhere.

19.
J Vet Med Educ ; 47(s1): 20-29, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33074078

ABSTRACT

The World Organisation for Animal Health (OIE) provides the requirements needed for graduating veterinary professionals to be competent in the delivery of animal health services. However, significant differences in veterinary curricula across countries-attributable to differing animal health priorities and predominant types of veterinary practice-provide a challenge for veterinary schools to address these competencies adequately. As part of the OIE's veterinary education establishment Twinning Project activities, the College of Veterinary Medicine and Biomedical Sciences (CVMBS) of Sokoine University of Agriculture (SUA) in Tanzania undertook a curriculum mapping and gap analysis to assess the extent to which the veterinary curriculum addresses OIE's 'Day 1 Competencies' for graduating veterinarians. Results of the analysis indicated that all the OIE's Day 1 Competencies (general, specific, and advanced) are addressed to some degree by the courses present in the curriculum. However, gaps in the depth and breadth of instruction were found for a number of competencies in all three categories. These findings indicate a need for addressing the gaps in the next curriculum review. This will allow the development of a stronger curriculum that will efficiently meet the national and international animal health requirements.


Subject(s)
Education, Veterinary , Veterinarians , Veterinary Medicine , Animals , Curriculum , Global Health , Humans , Tanzania
20.
Am J Trop Med Hyg ; 103(4): 1427-1434, 2020 10.
Article in English | MEDLINE | ID: mdl-32748767

ABSTRACT

Molecular data are required to improve our understanding of the epidemiology of leptospirosis in Africa and to identify sources of human infection. We applied molecular methods to identify the infecting Leptospira species and genotypes among patients hospitalized with fever in Tanzania and compared these with Leptospira genotypes detected among animals in Tanzania to infer potential sources of human infection. We performed lipL32 real-time PCR to detect the presence of pathogenic Leptospira in acute-phase plasma, serum, and urine samples obtained from study participants with serologically confirmed leptospirosis and participants who had died with febrile illness. Leptospira blood culture was also performed. In positive specimens, we performed species-specific PCR and compared participant Leptospira secY sequences with Leptospira reference sequences and sequences previously obtained from animals in Tanzania. We detected Leptospira DNA in four (3.6%) of 111 participant blood samples. We detected Leptospira borgpetersenii (one participant, 25.0%), Leptospira interrogans (one participant, 25.0%), and Leptospira kirschneri (one participant, 25.0%) (one [25%] undetermined). Phylogenetic comparison of secY sequence from the L. borgpetersenii and L. kirschneri genotypes detected from participants was closely related to but distinct from genotypes detected among local livestock species. Our results indicate that a diverse range of Leptospira species is causing human infection. Although our analysis suggests a close relationship between Leptospira genotypes found in people and livestock, continued efforts are needed to obtain more Leptospira genetic material from human leptospirosis cases to help prioritize Leptospira species and genotypes for control.


Subject(s)
Leptospira/isolation & purification , Leptospirosis/transmission , Livestock/microbiology , Animals , Bacterial Outer Membrane Proteins/genetics , Disease Reservoirs , Genes, Bacterial , Genotyping Techniques , Humans , Leptospira/classification , Leptospira/genetics , Leptospirosis/epidemiology , Leptospirosis/microbiology , Lipoproteins/genetics , Pathology, Molecular , Phylogeny , SEC Translocation Channels/genetics , Tanzania/epidemiology , Zoonoses/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...