Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
1.
Toxics ; 12(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38668527

ABSTRACT

The sweet potato weevil Cylas formicarius is a notorious underground pest in sweet potato (Ipomoea batatas L.). However, little is known about the effects of cadmium (Cd) stress on weevil biology and resistance to pesticides and biotic agents. Therefore, we fed sweet potato weevils with Cd-contaminated sweet potato and assessed adult food intake and survival and larval developmental duration and mortality rates, as well as resistance to the insecticide spinetoram and susceptibility to the entomopathogenic fungus Beauveria bassiana. With increasing Cd concentration, the number of adult weevil feeding holes, adult survival and life span, and larval developmental duration decreased significantly, whereas larval mortality rates increased significantly. However, at the lowest Cd concentration (30 mg/L), adult feeding was stimulated. Resistance of adult sweet potato weevils to spinetoram increased at low Cd concentration, whereas Cd contamination did not affect sensitivity to B. bassiana. Thus, Cd contamination affected sweet potato weevil biology and resistance, and further studies will investigate weevil Cd accumulation and detoxification mechanisms.

2.
Mol Genet Genomics ; 299(1): 23, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431687

ABSTRACT

Nucleotide mutations in human genes have long been a hot subject for study because some of them may lead to severe human diseases. Understanding the general mutational process and evolutionary trend of human genes could help answer such questions as why certain diseases occur and what challenges we face in protecting human health. In this study, we conducted statistics on 89,895 single-nucleotide variations identified in coding regions of 18,339 human genes. The results show that C and G are frequently mutated into T and A in human genes. C/G (C or G)-to-T/A mutations lead to reduction of hydrogen bonds in double-stranded DNA because C-G and T-A base pairs are maintained by three and two hydrogen bonds respectively. C-to-T and G-to-A mutations occur predominantly in human genes because they not only reduce hydrogen bonds but also belong to transition mutation. Reduction of hydrogen bonds could reduce energy consumption not only in separating double strands of mutated DNA for transcription and replication but also in disrupting stem-loop structure of mutated mRNA for translation. It is thus considered that to reduce hydrogen bonds (and thus to reduce energy consumption in gene expression) is one of the driving forces for nucleotide mutation. Moreover, codon mutation is positively correlated to its content, suggesting that most mutations are not targeted on changing any specific codons (amino acids) but are merely for reducing hydrogen bonds. Our study provides an example of utilizing single-nucleotide variation data to infer evolutionary trend of human genes, which can be referenced to conduct similar studies in other organisms.


Subject(s)
Biological Evolution , DNA , Humans , Mutation , DNA/genetics , Codon , Nucleotides/genetics
3.
Angew Chem Int Ed Engl ; 63(13): e202315674, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38327006

ABSTRACT

Sesquiterpene synthases (STPSs) catalyze carbocation-driven cyclization reactions that can generate structurally diverse hydrocarbons. The deprotonation-reprotonation process is widely used in STPSs to promote structural diversity, largely attributable to the distinct regio/stereoselective reprotonations. However, the molecular basis for reprotonation regioselectivity remains largely understudied. Herein, we analyzed two highly paralogous STPSs, Artabotrys hexapetalus (-)-cyperene synthase (AhCS) and ishwarane synthase (AhIS), which catalyze reactions that are distinct from the regioselective protonation of germacrene A (GA), resulting in distinct skeletons of 5/5/6 tricyclic (-)-cyperene and 6/6/5/3 tetracyclic ishwarane, respectively. Isotopic labeling experiments demonstrated that these protonations occur at C3 and C6 of GA in AhCS and AhIS, respectively. The cryo-electron microscopy-derived AhCS complex structure provided the structural basis for identifying different key active site residues that may govern their functional disparity. The structure-guided mutagenesis of these residues resulted in successful functional interconversion between AhCS and AhIS, thus targeting the three active site residues [L311-S419-C458]/[M311-V419-A458] that may act as a C3/C6 reprotonation switch for GA. These findings facilitate the rational design or directed evolution of STPSs with structurally diverse skeletons.


Subject(s)
Alkyl and Aryl Transferases , Sesquiterpenes , Cryoelectron Microscopy , Sesquiterpenes/chemistry , Catalysis , Catalytic Domain , Alkyl and Aryl Transferases/genetics
4.
PLoS One ; 19(2): e0291543, 2024.
Article in English | MEDLINE | ID: mdl-38354108

ABSTRACT

Our previous work demonstrated that the anisodamine (ANI) and neostigmine (NEO) combination produced an antiseptic shock effect and rescued acute lethal crush syndrome by activating the α7 nicotinic acetylcholine receptor (α7nAChR). This study documents the therapeutic effect and underlying mechanisms of the ANI/NEO combination in dextran sulfate sodium (DSS)-induced colitis. Treating mice with ANI and NEO at a ratio of 500:1 alleviated the DSS-induced colitis symptoms, reduced body weight loss, improved the disease activity index, enhanced colon length, and alleviated colon inflammation. The combination treatment also enhanced autophagy in the colon of mice with DSS-induced colitis and lipopolysaccharide/DSS-stimulated Caco-2 cells. Besides, the ANI/NEO treatment significantly reduced INF-γ, TNF-α, IL-6, and IL-22 expression in colon tissues and decreased TNF-α, IL-1ß, and IL-6 mRNA levels in Caco-2 cells. Meanwhile, the autophagy inhibitor 3-methyladenine and ATG5 siRNA attenuated these effects. Furthermore, 3-methyladenine (3-MA) and the α7nAChR antagonist methyllycaconitine (MLA) weakened the ANI/NEO-induced protection on DSS-induced colitis in mice. Overall, these results indicate that the ANI/NEO combination exerts therapeutic effects through autophagy and α7nAChR in a DSS-induced colitis mouse model.


Subject(s)
Colitis , Neostigmine , Solanaceous Alkaloids , Mice , Animals , Humans , Neostigmine/adverse effects , Tumor Necrosis Factor-alpha/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Interleukin-6/metabolism , Caco-2 Cells , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Autophagy , Dextran Sulfate/toxicity , Colon/metabolism , Mice, Inbred C57BL , Disease Models, Animal
5.
Int Immunopharmacol ; 130: 111676, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38367465

ABSTRACT

ß-arrestin-1 has been demonstrated to participate in the regulation of inflammatory reactions in several diseases. Thus, this study aimed to investigate the role of macrophage ß-arrestin-1 in the pathogenesis and progression of ulcerative colitis (UC). A myeloid ß-arrestin-1 conditional knockout mouse model was generated to explore the role of macrophage ß-arrestin-1. DSS was employed for the establishment of an ulcerative colitis mouse model, using TNF-α as an inflammatory stressor in vitro. The expression level of ß-arrestin-1 was detected via western blot and immunofluorescence assays, whilst disease severity was evaluated by clinical score and H&E staining in the DSS-induced colitis model. In the in vitro experiments, the levels of inflammatory cytokines were examined using real-time PCR. NF-κB activation was detected through the double luciferase reporter system, western blot, and electrophoretic mobility shift assay (EMSA). BAY11-7082 was used to inhibit NF-κB activation. Our results exposed that the level of ß-arrestin-1 was increased in monocytes/macrophages derived from DSS-induced colitis mice or under the TNF-α challenge. Moreover, conditionally knocking out the expression of myeloid ß-arrestin-1 alleviated disease severity, while knocking out the expression of ß-arrestin-1 decreased the levels of inflammatory cytokines. Additionally, NF-κB was identified as a central regulatory element of ß-arrestin-1 promoter, and using BAY11-7082 to inhibit NF-κB activation lowered the level of ß-arrestin-1 under TNF-α challenge. ß-arrestin-1 led to the activation of the NF-κB signaling pathway by enhancing binding to IκBα and IKK under the TNF-α challenge. Taken together, our findings demonstrated macrophage ß-arrestin-1 contributes to the deterioration of DSS-induced colitis through the interaction with NF-κB signaling, thus highlighting a novel target for the treatment of UC.


Subject(s)
Colitis, Ulcerative , Colitis , Nitriles , Sulfones , Animals , Mice , NF-kappa B/metabolism , Colitis, Ulcerative/drug therapy , Tumor Necrosis Factor-alpha/metabolism , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism , beta-Arrestin 1/therapeutic use , Signal Transduction , Colitis/chemically induced , Colitis/drug therapy , Cytokines/metabolism , Macrophages/metabolism , Dextran Sulfate , Mice, Inbred C57BL , Disease Models, Animal
6.
Cell Death Discov ; 10(1): 23, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216595

ABSTRACT

Extracellular vesicles (EVs) have gained increasing recognition as significant regulators of intercellular communication in various physiological and pathological processes. These vesicles play a pivotal role in cancer progression by facilitating the transfer of diverse cargoes, including lipids, proteins, and nucleic acids. Regulated cell death (RCD), the orderly and autonomous death of cells, is controlled by a variety of biomacromolecules and, in turn, influences various biological processes and cancer progression. Recent studies have demonstrated that EV cargoes regulate diverse oncogenes and tumor suppressors to mediate different nonapoptotic forms of RCD, notably ferroptosis, pyroptosis, and necroptosis. Nevertheless, comprehensive exploration of EV-mediated nonapoptotic RCD forms in the context of cancer has not been performed. This review summarizes the progress regarding the biological functions and underlying mechanisms of EVs in mediating nonapoptotic RCD by delivery of cargoes to regulate tumor progression. Additionally, the review delves into the potential clinical applications of EV-mediated cell death and its significance in the areas of cancer diagnosis and therapy.

7.
BMC Cancer ; 24(1): 159, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297199

ABSTRACT

This study was designed to evaluate the safety and feasibility of laparoscopic radical cystectomy (LRC) for male octogenarian patients with muscle-invasive bladder cancer (MIBC). Briefly, a total of 57 male octogenarian patients (A group) with bladder carcinoma were enrolled and underwent LRC and intracorporeal pelvic lymph node dissection with bilateral cutaneous ureterostomy from May 2016 to December 2022. Besides, 63 male patients (age < 80 years old) with bladder carcinoma undergoing LRC and 17 octogenarian male patients with bladder carcinoma undergoing open radical cystectomy (ORC) were enrolled in B and C groups as control. All perioperative clinical materials and outcomes of long-term follow-up, and complication were collected. The specific results were shown as follows. Compared with C group, the operation time and resected lymph node in A group was increased, and the estimated blood loss, the number of transfusion needed, duration of pelvic drainage and hospital stay after surgery was decreased. The death rate and ileus complication rate were higher in A group (12 cases) than in C group (15 cases). The cases of ureteral stricture in A group (13 cases) was decreased compared with that in C group. Overall, LRC and bilateral cutaneous ureterostomy are safe, feasible and better choices for the treatment of male octogenarian patients with MIBC. The octogenarian receiving cutaneous ureterostomy heals slowly and exists certain incomplete intestinal obstruction after surgery.


Subject(s)
Carcinoma , Laparoscopy , Urinary Bladder Neoplasms , Aged, 80 and over , Humans , Male , Cystectomy/adverse effects , Cystectomy/methods , Urinary Bladder/pathology , Octogenarians , Laparoscopy/adverse effects , Laparoscopy/methods , Feasibility Studies , Treatment Outcome , Urinary Bladder Neoplasms/surgery , Urinary Bladder Neoplasms/pathology , Carcinoma/surgery , Muscles/pathology
8.
Int Immunopharmacol ; 125(Pt A): 111085, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866313

ABSTRACT

Autophagy in atherosclerotic plaque macrophage contributes to the alleviation of atherosclerosis through the promotion of lipid metabolism. ß-arrestins are multifunctional proteins participating various kinds of cellular signaling pathways. Here we aimed to determine the role of ß-arrestin-1, an important member of ß-arrestin family, in atherosclerosis, and whether autophagy was involved in this process. ApoE-/-ß-arrestin-1fl/flLysM-Cre mice were created through bone marrow transplantation for the atherosclerosis model with conditional myeloid knocking out ß-arrestin-1. Bone marrow-derived macrophages (BMDMs) were used for the in vitro studies. Oil red O staining was used to detect the lesional area. F4/80, Masson trichrome and picro-Sirius red staining were applied for the determination of plaque stability. Real-time PCR was used for the detection of levels of lipid metabolism-related receptors. Electron microscopy and tandem fluorescent mRFP-GFP-LC3 plasmid was applied to test autophagy level. We found that ß-arrestin-1 was highly increased in expression in plaque macrophage on the occurrence of atherosclerosis. Conditional myeloid knocking out ß-arrestin-1 largely promotes plaque formation and vulnerability. In murine macrophage with lipid loading, knocking down ß-arrestin-1 enhanced foam cell formation and levels of plasma and cellular cholesterol, while overexpressing ß-arrestin-1 led to the opposite effects. The alleviative effects induced by macrophage ß-arrestin-1 in atherosclerosis were involved in autophagy, based on the reduction of autophagy level with the knocking down of macrophage ß-arrestin-1 and administration of autophagy inhibitors which largely attenuated the decreasing effect on foam cell formation. Our results demonstrated for the first time that macrophage ß-arrestin-1 protected against atherosclerosis through the induction of autophagy.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , beta-Arrestin 1 , Animals , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/metabolism , Autophagy , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism , Macrophages/metabolism
9.
Plant Divers ; 45(3): 302-308, 2023 May.
Article in English | MEDLINE | ID: mdl-37397597

ABSTRACT

Myanmar is one of the most biodiverse countries in the Asia-Pacific region due to a wide range of climatic and environmental heterogeneity. Floristic diversity in Myanmar is largely unknown, resulting in a lack of comprehensive conservation plans. We developed a database of higher plants in Myanmar derived from herbarium specimens and literature sources, and analyzed patterns of diversity inventories and collection inconsistencies, aiming to provide a baseline floristic data of Myanmar and act as a guide for future research efforts. We collected 1,329,354 records of 16,218 taxa. Results show that the collection densities at the township level was variable, with 5% of townships having no floristic collections. No ecoregion had an average collection density of greater than 1 specimen/km2 and the lowest collection density was found in the Kayah-Karen Montane Rainforests, which covered 8% of Myanmar's total area. The highest sampling densities were found in Mandalay Region, Chin State, and Yangon Region. Despite floristic collections over the past three centuries, knowledge of the distribution of the vast majority of plant taxa remained limited, particularly for gymnosperms, pteridophytes, and bryophytes. More botanical surveys and further analyses are needed to better describe Myanmar's floristic diversity. An important strategy to promote knowledge of the biodiversity patterns in Myanmar is to improve the collection and digitalization of specimens and to strengthen cooperation among countries.

10.
Plants (Basel) ; 12(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37375866

ABSTRACT

As a component of the MAP project, the study of the flora in Northeast Asia (comprising Japan, South Korea, North Korea, Northeast China, and Mongolia) convincingly underscores the indispensability of precise and comprehensive diversity data for flora research. Due to variations in the description of flora across different countries in Northeast Asia, it is essential to update our understanding of the region's overall flora using the latest high-quality diversity data. This study employed the most recently published authoritative data from various countries to conduct a statistical analysis of 225 families, 1782 genera, and 10,514 native vascular species and infraspecific taxa in Northeast Asia. Furthermore, species distribution data were incorporated to delineate three gradients in the overall distribution pattern of plant diversity in Northeast Asia. Specifically, Japan (excluding Hokkaido) emerged as the most prolific hotspot for species, followed by the Korean Peninsula and the coastal areas of Northeast China as the second richest hotspots. Conversely, Hokkaido, inland Northeast China, and Mongolia constituted species barren spots. The formation of the diversity gradients is primarily attributed to the effects of latitude and continental gradients, with altitude and topographic factors within the gradients modulating the distribution of species.

12.
Sci Adv ; 9(14): eadd8553, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37018407

ABSTRACT

As Earth's climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.


Subject(s)
Magnoliopsida , Humans , Phylogeny , Climate Change , Biodiversity
13.
Bull Entomol Res ; 113(3): 412-418, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36866720

ABSTRACT

One of the most common harmful mites in edible fungi is Histiostoma feroniarum Dufour (Acaridida: Histiostomatidae), a fungivorous astigmatid mite that feeds on hyphae and fruiting bodies, thereby transmitting pathogens. This study examined the effects of seven constant temperatures and 10 types of mushrooms on the growth and development of H. feroniarum, as well as its host preference. Developmental time for the total immature stages was significantly affected by the type of mushroom species, ranging from 4.3 ± 0.4 days (reared on Pleurotus eryngii var. tuoliensis Mou at 28°C) to 17.1 ± 2.3 days (reared on Auricularia polytricha Sacc. at 19°C). The temperature was a major factor in the formation of facultative heteromorphic deutonymphs (hypopi). The mite entered the hypopus stage when the temperature dropped to 16°C or rose above 31°C. The growth and development of this mite were significantly influenced by the type of species and variety of mushrooms. Moreover, the fungivorous astigmatid mite preferred to feed on the 'Wuxiang No. 1' strain of Lentinula edodes (Berk.) Pegler and the 'Gaowenxiu' strain of P. pulmonarius (Fr.) Quél., with a shorter development period compared with that of feeding on other strains. These results therefore quantify the effect of host type and temperature on fungivorous astigmatid mite growth and development rates, and provide a reference for applying mushroom cultivar resistance to biological pest control.


Subject(s)
Agaricales , Mites , Pleurotus , Animals , Temperature
14.
Neurobiol Dis ; 181: 106103, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36997128

ABSTRACT

Epilepsy is considered to result from an imbalance between excitation and inhibition of the central nervous system. Pathogenic mutations in the methyl-CpG binding domain protein 5 gene (MBD5) are known to cause epilepsy. However, the function and mechanism of MBD5 in epilepsy remain elusive. Here, we found that MBD5 was mainly localized in the pyramidal cells and granular cells of mouse hippocampus, and its expression was increased in the brain tissues of mouse models of epilepsy. Exogenous overexpression of MBD5 inhibited the transcription of the signal transducer and activator of transcription 1 gene (Stat1), resulting in increased expression of N-methyl-d-aspartate receptor (NMDAR) subunit 1 (GluN1), 2A (GluN2A) and 2B (GluN2B), leading to aggravation of the epileptic behaviour phenotype in mice. The epileptic behavioural phenotype was alleviated by overexpression of STAT1 which reduced the expression of NMDARs, and by the NMDAR antagonist memantine. These results indicate that MBD5 accumulation affects seizures through STAT1-mediated inhibition of NMDAR expression in mice. Collectively, our findings suggest that the MBD5-STAT1-NMDAR pathway may be a new pathway that regulates the epileptic behavioural phenotype and may represent a new treatment target.


Subject(s)
Epilepsy , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Memantine/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/genetics , Signal Transduction , STAT1 Transcription Factor/metabolism
15.
Proc Biol Sci ; 290(1990): 20221658, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36629113

ABSTRACT

Human-induced biodiversity loss negatively affects ecosystem function, but the interactive effects of biodiversity change across trophic levels remain insufficiently understood. We sampled arboreal spiders and lepidopteran larvae across seasons in 2 years in a subtropical tree diversity experiment, and then disentangled the links between tree diversity and arthropod predator diversity by deconstructing the pathways among multiple components of diversity (taxonomic, phylogenetic and functional) with structural equation models. We found that herbivores were major mediators of plant species richness effects on abundance, species richness, functional and phylogenetic diversity of predators, while phylogenetic, functional and structural diversity of trees were also important mediators of this process. However, the strength and direction differed between functional, structural and phylogenetic diversity effects, indicating different underlying mechanisms for predator community assembly. Abundance and multiple diversity components of predators were consistently affected by tree functional diversity, indicating that the variation in structure and environment caused by plant functional composition might play key roles in predator community assembly. Our study highlights the importance of an integrated approach based on multiple biodiversity components in understanding the consequences of biodiversity loss in multitrophic communities.


Subject(s)
Arthropods , Spiders , Animals , Humans , Ecosystem , Phylogeny , Biodiversity , Plants
16.
J Anim Ecol ; 92(2): 442-453, 2023 02.
Article in English | MEDLINE | ID: mdl-36507573

ABSTRACT

Global biodiversity decline and its cascading effects through trophic interactions pose a severe threat to human society. Establishing the impacts of biodiversity decline requires a more thorough understanding of multi-trophic interactions and, more specifically, the effects that loss of diversity in primary producers has on multi-trophic community assembly. Within a synthetic conceptual framework for multi-trophic beta-diversity, we tested a series of hypotheses on neutral and niche-based bottom-up processes in assembling herbivore and carnivore communities in a subtropical forest using linear models, hieratical variance partitioning based on linear mixed-effects models (LMMs) and simulation. We found that the observed taxonomic, phylogenetic and functional beta-diversity of both herbivorous caterpillars and carnivorous spiders were significantly and positively related to tree dissimilarity. Linear models and variance partitioning for LMMs jointly suggested that as a result of bottom-up effects, producer dissimilarities were predominant in structuring consumer dissimilarity, the strength of which highly depended on the trophic dependencies on producers, the diversity facet examined, and data quality. Importantly, linear models for standardized beta-diversities against producer dissimilarities implied a transition between niche-based processes such as environmental filtering and competitive exclusion, which supports the role of bottom-up effect in determining consumer community assembly. These findings enrich our mechanistic understanding of the 'Diversity Begets Diversity' hypothesis and the complexity of higher-trophic community assembly, which is fundamental for sustainable biodiversity conservation and ecosystem management.


Subject(s)
Ecosystem , Herbivory , Humans , Animals , Phylogeny , Biodiversity , Forests
17.
J Asian Nat Prod Res ; 25(7): 667-673, 2023.
Article in English | MEDLINE | ID: mdl-36272133

ABSTRACT

Anhydroicaritin (1a), baohuoside (1b) and icariin (1c) were recognized as major pharmacologically active ingredients of Epimedium plants. Their primary means of acquisition were chemical isolation from plants. However, it suffers from low yield, environmental pollution and shortage of plants. Herein, to remedy these problems, biosynthesis was explored to obtain the three active ingredients. Fortunately, with SfFPT as 8-prenyltransferase, EpPF3RT and Ep7GT as glycosyltransferases, kaempferide (1) was transferred to 1a, 1b and 1c enzymatically. Thus, we report the details of this method. This approach represents a promising environmental friendly alternative for the production of these compounds from an abundant analogue.


Subject(s)
Benzopyrans , Flavonoids , Flavonoids/chemistry , Glycosyltransferases , Plants
18.
Plant Divers ; 45(6): 757-758, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38197010

ABSTRACT

[This corrects the article DOI: 10.1016/j.pld.2023.01.008.].

19.
China Tropical Medicine ; (12): 596-2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979772

ABSTRACT

@#Abstract: Objective To establish the duplex TaqMan RT-PCR method for detection of Entamoeba histolytica and Giardia lamblia in fecal samples. Methods Primer pairs and probes for Entamoeba histolytica and Giardia lamblia were designed and duplex TaqMan RT-PCR amplification system was constructed. PCR products were inserted into the pUC57 plasmid, and the lower limit of detection of the method was determined. Clinical stool samples were tested in order to evaluated the efficacy of the method. Results The detection limits of duplex TaqMan RT-PCR were 31.6 copies/μL for Entamoeba histolytica and 32 copies/μL for Giardia lamblia, respectively. Of the total of 212 clinical stool samples tested, all 3 samples with E. histolytica-positive patients by microscopy were positive by PCR, while 1 from 209 samples with E. histolytica-negative patients by microscopy were positive by PCR, and the remaining samples were negative. For Giardia lamblia, all 8 samples positive by microscopy were positive by PCR, and 1 from 204 sample with a microscopy-negative patient was positive by PCR, and the remaining samples were negative. The amplification product sequencing and blast analysis were used to confirm that the amplified sequence in the specimen of a patient with negative microscopy but positive PCR belongs to the targeted pathogen, supported by clinical symptoms and laboratory test results. PCR results for other diarrhea-causing pathogens were negative, indicating no cross-reactivity. Conclusions The dual TaqMan RT-PCR method developed in this study can not only detect microscopy-positive samples of Entamoeba histolytica and Giardia lamblia but also can detect samples that were missed by microscopy, with higher sensitivity than the microscopy method. Further, this detection method does not cross-react with other diarrhea-causing pathogens, including cross-react with other diarrhea-causing pathogens including Iodamoeba butschlii, Blastocystis hominis, Plesiomonas, Aeromonas, Salmonella, Shigella, Sphaerozoum fuscum, and Entamoeba hartmani, thus has a good specificity.

20.
Biomed Res Int ; 2022: 9125242, 2022.
Article in English | MEDLINE | ID: mdl-36467891

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the subtypes of esophageal cancer with Chinese characteristics, and its five-year survival rate is less than 20%. Early diagnosis is beneficial to improving the survival rate of ESCC significantly. Quantitative Real-Time Polymerase Chain Reaction is a high-throughput technique that can quantify tumor-related genes for early diagnosis. Its accuracy largely depends on the stability of the reference gene. There is no systematic scientific basis to demonstrate which reference gene expression is stable in ESCC and no consensus on the selection of internal reference. Therefore, this research used four software programs (The comparative delta-Ct method, GeNorm, NormFinder, and BestKeeper) to evaluate the expression stability of eight candidate reference genes commonly used in other tumor tissues and generated a comprehensive analysis by RefFinder. Randomly selected transcriptome sequencing analysis confirmed the SPP1 gene is closely related to ESCC. It was found that the expression trend of SPP1 obtained by RPS18 and PPIA as internal reference genes were the same as that of sequencing. The results show that RPS18 and PPIA are stable reference genes, and PPIA + RPS18 are a suitable reference gene combination. This is a reference gene report that combines transcriptome sequencing analysis and only focuses on ESCC, which makes the quantification more precise, systematic, and standardized, and promotes gene regulation research and the early diagnosis of ESCC in the future.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Transcriptome , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/genetics , Gene Expression Profiling , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...