Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139293

ABSTRACT

The PEBP gene family plays a significant role in regulating flower development and formation. To understand its function in Dendrobium chrysotoxum and D. nobile flowering, we identified 22 PEBP genes (11 DchPEBPs and 11 DnoPEBPs) from both species. We conducted analyses on their conserved domains and motifs, phylogenetic relationships, chromosome distribution, collinear correlation, and cis elements. The classification results showed that the 22 PEBPs were mainly divided into three clades, as follows: FT, MFT, and TFL1. A sequence analysis showed that most PEBP proteins contained five conserved domains, while a gene structure analysis revealed that 77% of the total PEBP genes contained four exons and three introns. The promoter regions of the 22 PEBPs contained several cis elements related to hormone induction and light response. This suggests these PEBPs could play a role in regulating flower development by controlling photoperiod and hormone levels. Additionally, a collinearity analysis revealed three pairs of duplicate genes in the genomes of both D. chrysotoxum and D. nobile. Furthermore, RT-qPCR has found to influence the regulatory effect of DchPEBPs on the development of flower organs (sepals, petals, lip, ovary, and gynostemium) during the flowering process (bud, transparent stage, and initial bloom). The results obtained imply that DchPEBP8 and DchPEBP9 play a role in the initial bloom and that DchPEBP7 may inhibit flowering processes. Moreover, DchPEBP9 may potentially be involved in the development of reproductive functionality. PEBPs have regulatory functions that modulate flowering. FT initiates plant flowering by mediating photoperiod and temperature signals, while TFL1 inhibits flowering processes. These findings provide clues for future studies on flower development in Dendrobium.


Subject(s)
Dendrobium , Dendrobium/genetics , Dendrobium/metabolism , Plant Proteins/metabolism , Phylogeny , Plants/metabolism , Hormones
2.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762622

ABSTRACT

The TCP gene family are plant-specific transcription factors that play important roles in plant growth and development. Dendrobium chrysotoxum, D. nobile, and D. huoshanense are orchids with a high ornamental value, but few studies have investigated the specific functions of TCPs in Dendrobium flower development. In this study, we used these three Dendrobium species to analyze TCPs, examining their physicochemical properties, phylogenetic relationships, gene structures, and expression profiles. A total of 50 TCPs were identified across three Dendrobium species; they were divided into two clades-Class-I (PCF subfamily) and Class-II (CIN and CYC/TB1 subfamilies)-based on their phylogenetic relationships. Our sequence logo analysis showed that almost all Dendrobium TCPs contain a conserved TCP domain, as well as the existence of fewer exons, and the cis-regulatory elements of the TCPs were mostly related to light response. In addition, our transcriptomic data and qRT-PCR results showed that DchTCP2 and DchTCP13 had a significant impact on lateral organs. Moreover, changes in the expression level of DchTCP4 suggested its important role in the phenotypic variation of floral organs. Therefore, this study provides a significant reference for the further exploration of TCP gene functions in the regulation of different floral organs in Dendrobium orchids.


Subject(s)
Dendrobium , Dendrobium/genetics , Dendrobium/metabolism , Phylogeny , Transcription Factors/metabolism , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Proteins/metabolism
3.
Nat Commun ; 14(1): 3661, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339946

ABSTRACT

Monocots are a major taxon within flowering plants, have unique morphological traits, and show an extraordinary diversity in lifestyle. To improve our understanding of monocot origin and evolution, we generate chromosome-level reference genomes of the diploid Acorus gramineus and the tetraploid Ac. calamus, the only two accepted species from the family Acoraceae, which form a sister lineage to all other monocots. Comparing the genomes of Ac. gramineus and Ac. calamus, we suggest that Ac. gramineus is not a potential diploid progenitor of Ac. calamus, and Ac. calamus is an allotetraploid with two subgenomes A, and B, presenting asymmetric evolution and B subgenome dominance. Both the diploid genome of Ac. gramineus and the subgenomes A and B of Ac. calamus show clear evidence of whole-genome duplication (WGD), but Acoraceae does not seem to share an older WGD that is shared by most other monocots. We reconstruct an ancestral monocot karyotype and gene toolkit, and discuss scenarios that explain the complex history of the Acorus genome. Our analyses show that the ancestors of monocots exhibit mosaic genomic features, likely important for that appeared in early monocot evolution, providing fundamental insights into the origin, evolution, and diversification of monocots.


Subject(s)
Acorus , Tetraploidy , Phylogeny , Diploidy , Genome
4.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373311

ABSTRACT

The small plant-specific YABBY gene family plays key roles in diverse developmental processes in plants. Dendrobium chrysotoxum, D. huoshanense, and D. nobile are perennial herbaceous plants belonging to Orchidaceae with a high ornamental value. However, the relationships and specific functions of the YABBY genes in the Dendrobium species remain unknown. In this study, six DchYABBYs, nine DhuYABBYs, and nine DnoYABBYs were identified from the genome databases of the three Dendrobium species, which were unevenly distributed on five, eight, and nine chromosomes, respectively. The 24 YABBY genes were classified into four subfamilies (CRC/DL, INO, YAB2, and FIL/YAB3) based on their phylogenetic analysis. A sequence analysis showed that most of the YABBY proteins contained conserved C2C2 zinc-finger and YABBY domains, while a gene structure analysis revealed that 46% of the total YABBY genes contained seven exons and six introns. All the YABBY genes harbored a large number of Methyl Jasmonate responsive elements, as well as anaerobic induction cis-acting elements in the promoter regions. Through a collinearity analysis, one, two, and two segmental duplicated gene pairs were identified in the D. chrysotoxum, D. huoshanense, and D. nobile genomes, respectively. The Ka/Ks values of these five gene pairs were lower than 0.5, indicating that the Dendrobium YABBY genes underwent negative selection. In addition, an expression analysis revealed that DchYABBY2 plays a role in ovary and early-stage petal development, while DchYABBY5 is essential for lip development and DchYABBY6 is crucial for early sepal formation. DchYABBY1 primarily regulates sepals during blooming. Furthermore, there is the potential involvement of DchYABBY2 and DchYABBY5 in gynostemium development. The results of a comprehensive genome-wide study would provide significant clues for future functional investigations and pattern analyses of YABBY genes in different flower parts during flower development in the Dendrobium species.


Subject(s)
Dendrobium , Dendrobium/genetics , Dendrobium/metabolism , Phylogeny , Genome-Wide Association Study , Flowers/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism
5.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175542

ABSTRACT

Apostasia shenzhenica belongs to the subfamily Apostasioideae and is a primitive group located at the base of the Orchidaceae phylogenetic tree. However, the A. shenzhenica mitochondrial genome (mitogenome) is still unexplored, and the phylogenetic relationships between monocots mitogenomes remain unexplored. In this study, we discussed the genetic diversity of A. shenzhenica and the phylogenetic relationships within its monocotyledon mitogenome. We sequenced and assembled the complete mitogenome of A. shenzhenica, resulting in a circular mitochondrial draft of 672,872 bp, with an average read coverage of 122× and a GC content of 44.4%. A. shenzhenica mitogenome contained 36 protein-coding genes, 16 tRNAs, two rRNAs, and two copies of nad4L. Repeat sequence analysis revealed a large number of medium and small repeats, accounting for 1.28% of the mitogenome sequence. Selection pressure analysis indicated high mitogenome conservation in related species. RNA editing identified 416 sites in the protein-coding region. Furthermore, we found 44 chloroplast genomic DNA fragments that were transferred from the chloroplast to the mitogenome of A. shenzhenica, with five plastid-derived genes remaining intact in the mitogenome. Finally, the phylogenetic analysis of the mitogenomes from A. shenzhenica and 28 other monocots showed that the evolution and classification of most monocots were well determined. These findings enrich the genetic resources of orchids and provide valuable information on the taxonomic classification and molecular evolution of monocots.


Subject(s)
Genome, Mitochondrial , Orchidaceae , Phylogeny , Mitochondria/genetics , RNA, Ribosomal/genetics , Orchidaceae/genetics
6.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36834646

ABSTRACT

Cymbidium sinense represents a distinctive Orchidaceae plant that is more tolerant than other terrestrial orchids. Studies have shown that many members of the MYB transcription factor (TF) family, especially the R2R3-MYB subfamily, are responsive to drought stress. This study identified 103 CsMYBs; phylogenetic analysis classified these genes into 22 subgroups with Arabidopsis thaliana. Structural analysis showed that most CsMYB genes contained the same motifs, three exons and two introns, and showed a helix-turn-helix 3D structure in each R repeat. However, the members of subgroup 22 contained only one exon and no intron. Collinear analysis revealed that C. sinense had more orthologous R2R3-MYB genes with wheat than A. thaliana and rice. Ka/Ks ratios indicated that most CsMYB genes were under purifying negative selection pressure. Cis-acting elements analysis revealed that drought-related elements were mainly focused on subgroups 4, 8, 18, 20, 21, and 22, and Mol015419 (S20) contained the most. The transcriptome analysis results showed that expression patterns of most CsMYB genes were upregulated in leaves in response to slight drought stress and downregulated in roots. Among them, members in S8 and S20 significantly responded to drought stress in C. sinense. In addition, S14 and S17 also participated in these responses, and nine genes were selected for the real-time reverse transcription quantitative PCR (RT-qPCR) experiment. The results were roughly consistent with the transcriptome. Our results, thus, provide an important contribution to understanding the role of CsMYBs in stress-related metabolic processes.


Subject(s)
Arabidopsis , Orchidaceae , Transcription Factors/metabolism , Plant Proteins/genetics , Droughts , Phylogeny , Gene Expression Regulation, Plant , Arabidopsis/genetics , Orchidaceae/metabolism
7.
Hortic Res ; 9: uhac220, 2022.
Article in English | MEDLINE | ID: mdl-36479582

ABSTRACT

Orchidaceae is one of the largest, most diverse families in angiosperms with significant ecological and economical values. Orchids have long fascinated scientists by their complex life histories, exquisite floral morphology and pollination syndromes that exhibit exclusive specializations, more than any other plants on Earth. These intrinsic factors together with human influences also make it a keystone group in biodiversity conservation. The advent of sequencing technologies and transgenic techniques represents a quantum leap in orchid research, enabling molecular approaches to be employed to resolve the historically interesting puzzles in orchid basic and applied biology. To date, 16 different orchid genomes covering four subfamilies (Apostasioideae, Vanilloideae, Epidendroideae, and Orchidoideae) have been released. These genome projects have given rise to massive data that greatly empowers the studies pertaining to key innovations and evolutionary mechanisms for the breadth of orchid species. The extensive exploration of transcriptomics, comparative genomics, and recent advances in gene engineering have linked important traits of orchids with a multiplicity of gene families and their regulating networks, providing great potential for genetic enhancement and improvement. In this review, we summarize the progress and achievement in fundamental research and industrialized application of orchids with a particular focus on molecular tools, and make future prospects of orchid molecular breeding and post-genomic research, providing a comprehensive assemblage of state of the art knowledge in orchid research and industrialization.

8.
Front Plant Sci ; 13: 1058287, 2022.
Article in English | MEDLINE | ID: mdl-36518517

ABSTRACT

The GRAS gene family encodes transcription factors that participate in plant growth and development phases. They are crucial in regulating light signal transduction, plant hormone (e.g. gibberellin) signaling, meristem growth, root radial development, response to abiotic stress, etc. However, little is known about the features and functions of GRAS genes in Orchidaceae, the largest and most diverse angiosperm lineage. In this study, genome-wide analysis of the GRAS gene family was conducted in Dendrobium chrysotoxum (Epidendroideae, Orchidaceae) to investigate its physicochemical properties, phylogenetic relationships, gene structure, and expression patterns under abiotic stress in orchids. Forty-six DchGRAS genes were identified from the D. chrysotoxum genome and divided into ten subfamilies according to their phylogenetic relationships. Sequence analysis showed that most DchGRAS proteins contained conserved VHIID and SAW domains. Gene structure analysis showed that intronless genes accounted for approximately 70% of the DchGRAS genes, the gene structures of the same subfamily were the same, and the conserved motifs were also similar. The Ka/Ks ratios of 12 pairs of DchGRAS genes were all less than 1, indicating that DchGRAS genes underwent negative selection. The results of cis-acting element analysis showed that the 46 DchGRAS genes contained a large number of hormone-regulated and light-responsive elements as well as environmental stress-related elements. In addition, the real-time reverse transcription quantitative PCR (RT-qPCR) experimental results showed significant differences in the expression levels of 12 genes under high temperature, drought and salt treatment, among which two members of the LISCL subfamily (DchGRAS13 and DchGRAS15) were most sensitive to stress. Taken together, this paper provides insights into the regulatory roles of the GRAS gene family in orchids.

9.
BMC Plant Biol ; 22(1): 557, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36456919

ABSTRACT

Containing the largest number of species, the orchid family provides not only materials for studying plant evolution and environmental adaptation, but economically and culturally important ornamental plants for human society. Previously, we collected genome and transcriptome information of Dendrobium catenatum, Phalaenopsis equestris, and Apostasia shenzhenica which belong to two different subfamilies of Orchidaceae, and developed user-friendly tools to explore the orchid genetic sequences in the OrchidBase 4.0. The OrchidBase 4.0 offers the opportunity for plant science community to compare orchid genomes and transcriptomes and retrieve orchid sequences for further study.In the year 2022, two whole-genome sequences of Orchidoideae species, Platanthera zijinensis and Platanthera guangdongensis, were de novo sequenced, assembled and analyzed. In addition, systemic transcriptomes from these two species were also established. Therefore, we included these datasets to develop the new version of OrchidBase 5.0. In addition, three new functions including synteny, gene order, and miRNA information were also developed for orchid genome comparisons and miRNA characterization.OrchidBase 5.0 extended the genetic information to three orchid subfamilies (including five orchid species) and provided new tools for orchid researchers to analyze orchid genomes and transcriptomes. The online resources can be accessed at https://cosbi.ee.ncku.edu.tw/orchidbase5/.


Subject(s)
MicroRNAs , Orchidaceae , Gene Order , Knowledge Bases , MicroRNAs/genetics , Orchidaceae/genetics , Synteny
10.
Front Plant Sci ; 13: 1068969, 2022.
Article in English | MEDLINE | ID: mdl-36570938

ABSTRACT

TCP gene family are specific transcription factors for plant, and considered to play an important role in development and growth. However, few related studies investigated the TCP gene trait and how it plays a role in growth and development of Orchidaceae. In this study, we obtained 14 TCP genes (CgTCPs) from the Spring Orchid Cymbidium goeringii genome. The classification results showed that 14 CgTCPs were mainly divided into two clades as follows: four PCF genes (Class I), nine CIN genes and one CYC gene (Class II). The sequence analysis showed that the TCP proteins of C. goeringii contain four conserved regions (basic Helix-Loop-Helix) in the TCP domain. The exon-intron structure varied in the clade according to a comparative investigation of the gene structure, and some genes had no introns. There are fewer CgTCP homologous gene pairs compared with Dendrobium catenatum and Phalaenopsis equestris, suggesting that the TCP genes in C. goeringii suffered more loss events. The majority of the cis-elements revealed to be enriched in the function of light responsiveness, followed by MeJA and ABA responsiveness, demonstrating their functions in regulating by light and phytohormones. The collinearity study revealed that the TCPs in D. catenatum, P. equestris and C. goeringii almost 1:1. The transcriptomic data and real-time reverse transcription-quantitative PCR (RT-qPCR) expression profiles showed that the flower-specific expression of the TCP class II genes (CgCIN2, CgCIN5 and CgCIN6) may be related to the regulation of florescence. Altogether, this study provides a comprehensive analysis uncovering the underlying function of TCP genes in Orchidaceae.

SELECTION OF CITATIONS
SEARCH DETAIL
...