Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 58(4): 2576-2587, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30721029

ABSTRACT

Two series of ß,ß'-pyrrole butano- and benzo-substituted mangenese(III) tetraarylporphyrins were synthesized and characterized with regard to their spectral and electrochemical properties. The investigated compounds have the general formula butano(Ar)4PorMnCl and benzo(Ar)4PorMnCl, where Por is the dianion of the porphyrin and Ar is a p-CH3Ph, Ph or p-ClPh group on each of the four meso-positions of the macrocycle. Each manganese(III) butano- or benzoporphyrin was examined in CH2Cl2 and/or pyridine containing 0.1 M tetra- n-butylammonium perchlorate and the data then were compared to that of the parent tetraarylporphyrins having the same meso-substituents. Up to four reductions are observed for each compound, the first being metal-centered to generate a Mn(II) porphyrin, and the second and third being porphyrin ring-centered to give a Mn(II) porphyrin π-anion radical and dianion, respectively. The one-electron reduced manganese porphyrins have an ESR spectrum with signals at g⊥= 5.6-5.8 and g// = 2.0, indicating a mixture of the four- and five-coordinated Mn(II) complexes in a high-spin state (3d5, S = 5/2, I = 5/2). Data from cyclic voltammetry and spectroelectrochemistry both suggest that formation of the porphyrin dianion is followed by a chemical reaction at the electrode surface to give an electroactive phlorin anion. The effects of solvent and porphyrin substituents on ultraviolet-visible light (UV-vis) spectra, redox potentials, and electron transfer mechanisms are discussed.

2.
Inorg Chem ; 57(3): 1490-1503, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29363959

ABSTRACT

A series of cobalt porphyrins with π-extending or highly electron-withdrawing ß-pyrrole substituents were investigated as to their electrochemistry, spectroscopic properties, and reactivity after electroreduction or electroxidation in nonaqueous media. Each porphyrin, represented as PorCo (where Por = TPP(NO2)Y2 or TPP(NO2)Y6 and Y = phenyl, phenylethynyl, Br, or CN) was shown to undergo multiple redox reactions involving the conjugated π-ring system or central metal ion which could exist in a Co(III), Co(II), or Co(I) oxidation state under the application of an applied oxidizing or reducing potential. Thermodynamic half-wave potentials for the stepwise conversion between each oxidation state of [PorCo]n (where n ranged from +3 to -3) were measured by cyclic voltammetry and analyzed as a function of the compound structure and properties of the electrochemical solvent. UV-visible spectra were obtained for each oxidized or reduced porphyrin in up to six different oxidation states ranging from [PorCo]3- to [PorCo]3+ and analyzed as a function of the compound structure and utilized electrochemical solvent. Chemically or electrochemically generated Co(I) porphyrins are known to be highly reactive in solutions containing alkyl or aryl halides, and this property was utilized to in situ generate a new series of methyl carbon-bonded cobalt(III) porphyrins with the same π-extending or highly electron-withdrawing substituents as the initial Co(II) derivatives. The electrosynthesized carbon-bonded Co(III) porphyrins were then characterized as to their own electrochemical and spectroscopic properties after the addition of one, two, or three electrons in nonaqueous media.

3.
Dalton Trans ; 46(30): 10014-10022, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28726883

ABSTRACT

Di- and octa-phenylethynyl (PE) substituted π-extended copper corroles were synthesized and characterized as to their structural, electrochemical and spectroscopic properties. The addition of two or eight PE groups to the ß-pyrrole positions of the corrole results in dramatic red shifts in the electronic absorption spectra and new reductions which are not seen for the parent compound lacking PE substituents. CuCor(PE)8 is reduced in four reversible one-electron transfer steps to give derivatives of [CuCor(PE)8]n- where n = 1, 2, 3 or 4. Variable temperature 1H NMR and EPR measurements were carried out and suggest that the octa- and di-PE substituted Cu-corroles can both be described as an antiferromagnetically coupled CuII corrole cation radical which is in equilibrium with a triplet state, possibly due to a lower singlet-triplet energy gap as compared to 1 and 2 at room temperature. The EPR spectra of one-electron oxidized and one electron reduced species exhibited the characteristics of Cu(ii) corroles. The products generated in the first two reductions of each π-extended corrole were characterized by thin-layer spectroelectrochemistry, thus providing new insights into how UV-vis spectra of highly reduced corroles vary as a function of the number of PE groups and overall charge on the molecule. The singly reduced and singly oxidized copper corroles were also chemically generated in CH3CN and shown to have UV-visible spectra almost identical to the spectra obtained by electroreduction or electrooxidation in PhCN or THF containing 0.1 M tetrabutylammonium perchlorate.

4.
Inorg Chem ; 56(14): 8527-8537, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28677964

ABSTRACT

The first examples for the facile, reversible, and stepwise electrogeneration of triply ring-reduced porphyrin macrocycles are presented. The investigated compounds are represented as MTPP(NO2)(PE)6, MTTP(PE)8, NiTPP(NO2)(Ph)4, and MTPP(CN)4, where TTP and TPP are the dianions of tetratolylporphyrin and tetraphenylporphyrin, respectively, NO2, phenylethynyl (PE), and CN are substituents at the ß-pyrrole positions of the macrocycle, and M = CuII, NiII, ZnII, CoII, or 2H. Each porphyrin undergoes three or four reductions within the negative potential limit of the electrochemical solvent. The UV-visible spectra of the first three reduction products were characterized by means of thin-layer UV-vis spectroelectrochemistry, and the generation of multianionic porphyrins is interpreted in terms of extensive stabilization of the LUMOs due to the electron-withdrawing and/or extended π-conjugation of the ß-substituents.

5.
J Org Chem ; 82(5): 2545-2557, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28150499

ABSTRACT

A series of push-pull BODIPYs bearing multiple electron-donating and electron-acceptor groups were synthesized regioselectively from 2,3,5,6,8-pentachloro-BODIPY, and characterized by NMR spectroscopy, HRMS, and X-ray crystallography. The influence of the push-pull substituents on the spectroscopic and electrochemical properties of BODIPYs was investigated. Bathochromic shifts were observed for both absorbance (up to 37 nm) and emission (up to 60 nm) in different solvents upon introduction of the push-pull moieties. DFT calculations, consistent with the spectroscopic and cyclic voltammetry studies, show decreased HOMO-LUMO energy gaps upon the installation of the push-pull moieties. BODIPY 7 bearing thienyl groups on the 2 and 6 positions showed the largest λmax for both absorption (635-653 nm) and emission (706-707 nm), but also the lowest fluorescence quantum yields. All BODIPYs were nontoxic in the dark (IC50 > 200 µM) and showed low phototoxicity (IC50 > 100 µM, 1.5 J/cm2) toward human HEp2 cells. Despite the relatively low fluorescence quantum yields, the push-pull BODIPYS were effective for cell imaging, readily accumulating within cells and localizing mainly in the ER and Golgi. Our structure-property studies can guide future design of functionalized BODIPYs for various applications, including bioimaging and in dye-sensitized solar cells.


Subject(s)
Boron/chemistry , Porphobilinogen/analogs & derivatives , Spectrum Analysis/methods , Crystallography, X-Ray , Fluorescence , Molecular Structure , Porphobilinogen/chemistry , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...