Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(1): 1169-1178, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31840487

ABSTRACT

The physical properties, packing, morphology, and semiconducting performance of a planar π-conjugated system can be effectively modified by introducing side chains and substituent groups, both of which can be complementary to the π framework in changing the intermolecular association, frontier molecular orbital energy, optical band gap, and others. We herein show that installation of end-capped electron-withdrawing groups (EWGs), such as dicyanovinyl (-DCV), 3-ethylrhodanine (-RD), and 2-(3-oxo-indan-1-ylidene)-malononitrile (-INCN), together with siloxane side chains to the backbones of dithienyldiketopyrrolopyrrole (DPPT), such as DPPT-Si-DCV, DPPT-Si-RD, and DPPT-Si-INCN, can greatly improve its solubility, air stability, and film morphology to serve as an n-channel in thin-film transistor fabrication. The EWGs attached to the DPPT core narrowed the optical band gap (Egopt) and changed the highest occupied molecular orbital and the lowest unoccupied molecular orbital energies (EHOMO and ELUMO), making them suitable for n-channel field-effect transistor (FET) applications. The benefits of introducing siloxane side chains to the DPPT core include enhanced solubility, low crystallization barrier, enantiotropic phase behavior, and much improved FET performance. The DPPT-Si-INCN film displayed low-lying HOMO (-5.82 eV) and LUMO (-4.60 eV) energy levels and an optical band gap as low as 1.22 eV, all of which suggest that this derivative can be quite resistant toward aerial oxidation. Thin films of these derivatives were prepared by the solution-shear method. A comparison of the solution-sheared films indicated that the molecular packing motif of DPPT-Si-INCN film was somehow different from that of DPPT-Si-DCV and DPPT-Si-RD, in which the π-π stacking tended to align orthogonally to the shearing direction. This specific π-π stacking alignment could have an impact on the electron mobility (µe) values in transistors based on the solution-sheared films.

2.
J Org Chem ; 79(10): 4306-11, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24754491

ABSTRACT

AuCl3-catalyzed formal [4 + 2]-cycloadditions between substituted allenes and N-hydroxyanilines are described. This reaction sequence comprises initial isomerizations of allenes to butadienes under N2 and subsequent oxidations of N-hydroxyanilines to nitrosoarenes under O2. CuCl2 (5 mol %) was added in the second step to increase the oxidation efficiency. The reactions are compatible with various 1,1-di- and 1,1,3-trisubstituted allenes and N-hydroxyaniline derivatives. Our experimental data reveal that the roles of AuCl3 are 3-fold, including catalytic oxidations of N-hydroxyaniline derivatives to nitrosoarenes, isomerizations of alkyl-substituted allenes to dienes, and final nitroso/butadiene [4 + 2] cycloadditions.

SELECTION OF CITATIONS
SEARCH DETAIL