Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
1.
J Environ Sci (China) ; 149: 394-405, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181652

ABSTRACT

Heterogeneous crystallization is a common occurrence during the formation of solid wastes. It leads to the encapsulation of valuable/hazardous metals within the primary phase, presenting significant challenges for waste treatment and metal recovery. Herein, we proposed a novel method involving the in-situ formation of a competitive substrate during the precipitation of jarosite waste, which is an essential process for removing iron in zinc hydrometallurgy. We observed that the in-situ-formed competitive substrate effectively inhibits the heterogeneous crystallization of jarosite on the surface of anglesite, a lead-rich phase present in the jarosite waste. As a result, the iron content on the anglesite surface decreases from 34.8% to 1.65%. The competitive substrate was identified as schwertmannite, characterized by its loose structure and large surface area. Furthermore, we have elucidated a novel mechanism underlying this inhibition of heterogeneous crystallization, which involves the local supersaturation of jarosite caused by the release of ferric and sulfate ions from the competitive substrate. The local supersaturation promotes the preferential heterogeneous crystallization of jarosite on the competitive substrate. Interestingly, during the formation of jarosite, the competitive substrate gradually vanished through a dissolution-recrystallization process following the Ostwald rule, where a metastable phase slowly transitions to a stable phase. This effectively precluded the introduction of impurities and reduced waste volume. The goal of this study is to provide fresh insights into the mechanism of heterogeneous crystallization control, and to offer practical crystallization strategies conducive to metal separation and recovery from solid waste in industries.


Subject(s)
Crystallization , Ferric Compounds , Ferric Compounds/chemistry , Sulfates/chemistry , Iron Compounds/chemistry , Iron/chemistry , Refuse Disposal/methods
2.
J Environ Manage ; 370: 122396, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39244925

ABSTRACT

Jarosite waste is a by-product generated from iron removal process in the jarosite process, which typically contains valuable metals including zinc, nickel, cobalt, silver, indium, and lead. Due to the large amount of jarosite and the less efficient and costly methods of recovering residual metals, it is mainly disposed by landfills. However, leachate generated from the landfills can release high concentrations of heavy metals, which contaminate nearby water resources and pose environmental and health risks. In this review, the environmental and resource properties of jarosite waste were briefly summarized. Then those pyrometallurgical, hydrometallurgical and biological methods were discussed. In this review, considering the polymetallic properties and the low content of valuable metal elements of the jarosite waste, it is indicated that these processes had their own benefits and drawbacks such as overall yield, economic and technical constraints, and the necessity for combined processes to recycle multiple metal ions from jarosite wastes. Finally, this paper provided a critical and systematic review of studies on the novel green recycling technology for metals and material preparation based on the jarosite waste. This review can lay a guidance for the near-zero-waste processing of jarosite waste, with a particular focus on the combination of chemical and biological processes and waste-to-materials.

3.
Int J Biol Macromol ; 278(Pt 1): 134622, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127267

ABSTRACT

Antibody therapy of anti-HER2 monoclonal antibody (mAb) has been an important strategy in treating HER2-positive cancers. However, the efficacy is restricted by many factors, including the level of HER2 expressed by tumor cells and antibody resistance. To overcome these and boost the efficacy, a novel nanoparticle (NP) was constructed in this study for combined antibody therapy of antibody and photothermal therapy (PTT). This novel NP was assembled from 1-pyrenecarboxylic acid (PCA) functionalized anti-HER2 mAb and indocyanine green (ICG), a photothermal transduction agents (PTA), by non-covalent interactions, which was named as Anti-HER2 mAb-pyrene-indocyanine green (H-P-I). Notably, the constructed H-P-I NP not only maintained the affinity and cytotoxicity of anti-HER2 mAb, but also exhibited high photothermal conversion efficiency mediated by ICG. Both in vitro and in vivo assessments confirmed that compared with monotherapy of antibody or ICG, H-P-I demonstrated preferable efficacy in treating HER2-positive cancers. Further biochemistry analysis and pathological analysis ensured the biosafety of H-P-I administration. Taked together, this study proposes a feasible method for constructing tumor-targeted nano PTA based on anti-HER2 mAb through supramolecular self-assembly strategy, achieving synergistic antibody photothermal anticancer treatment, which has the potential to be a promising candidate for combination therapy of HER2-positive cancers.


Subject(s)
Immunoconjugates , Photothermal Therapy , Receptor, ErbB-2 , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/immunology , Receptor, ErbB-2/antagonists & inhibitors , Humans , Photothermal Therapy/methods , Animals , Immunoconjugates/pharmacology , Immunoconjugates/chemistry , Immunoconjugates/therapeutic use , Mice , Cell Line, Tumor , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/chemistry , Nanoparticles/chemistry , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , Female , Neoplasms/therapy , Neoplasms/immunology
4.
J Geriatr Cardiol ; 21(7): 751-759, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39183952

ABSTRACT

BACKGROUND: Previous studies have demonstrated the benefits of ideal cardiovascular health (CVH) in reducing cardiovascular risk. However, its role in subclinical atherosclerosis (SA) progression remains unclear. We aim to examine the association of CVH, estimated by the American Heart Association's new Life's Essential 8 (LE8), with the progression of SA. METHODS: This prospective cohort study was conducted among 972 asymptomatic Chinese participants and followed up for 5.7 years. The LE8 score (range, 0-100) consisted of blood pressure, lipids, glucose, body mass index, smoking status, diet health, physical activity and sleep health was evaluated in 1998 and 2008-2009. Progression of SA was determined by carotid plaque and coronary artery calcification (CAC) in 2008-2009 and 2013-2014. Log-binomial regression model was used to estimate the association of LE8 score with SA progression. RESULTS: Each 10 points increment in LE8 score was associated with 15.2% (RR: 0.848, 95% CI: 0.797-0.902), 17.7% (RR: 0.823, 95% CI: 0.766-0.884) and 12.0% (RR: 0.880, 95% CI: 0.845-0.916) lower risks of carotid plaque, CAC and overall SA progression, respectively. Compared with participants with non-ideal CVH at both visits, the participants with ideal CVH at both visits had 39.1% (RR: 0.609, 95% CI: 0.494-0.752), 41.0% (RR: 0.590, 95% CI: 0.456-0.764) and 29.7% (RR: 0.703, 95% CI: 0.598-0.825) lower risks of carotid plaque, CAC and overall SA progression, respectively. CONCLUSIONS: Higher LE8 scores were associated with lower risks of SA progression. Besides, long-term maintenance of optimal CVH was more beneficial to prevent SA progression.

5.
Biomed Environ Sci ; 37(8): 823-833, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39198248

ABSTRACT

Objective: In recent decades, China has implemented a series of policies to address air pollution. We aimed to assess the health effects of these policies on stroke burden attributable to ambient fine particulate matter (PM 2.5). Methods: Joinpoint regression was applied to explore the temporal tendency of stroke burden based on data from the Global Burden of Disease 2019 study. Results: The age-standardized rates of disability-adjusted life year (DALY) for stroke attributable to ambient PM 2.5 in China, increased dramatically during 1990-2012, subsequently decreased at an annual percentage change (APC) of -1.98 [95% confidence interval ( CI): -2.26, -1.71] during 2012-2019. For ischemic stroke (IS), the age-standardized DALY rates doubled from 1990 to 2014, and decreased at an APC of -0.83 (95% CI: -1.33, -0.33) during 2014-2019. Intracerebral hemorrhage (ICH) showed a substantial increase in age-standardized DALY rates from 1990 to 2003, followed by declining trends, with APCs of -1.46 (95% CI: -2.74, -0.16) during 2003-2007 and -3.33 (95% CI: -3.61, -3.06) during 2011-2019, respectively. Conversely, the age-standardized DALY rates for subarachnoid hemorrhage (SAH) generally declined during 1990-2019. Conclusion: Our results clarified the dynamic changes of the ambient PM 2.5-attributable stroke burden in China during 1990-2019, highlighting the health effects of air quality improvement policies.


Subject(s)
Air Pollutants , Particulate Matter , Stroke , Particulate Matter/adverse effects , Particulate Matter/analysis , China/epidemiology , Humans , Stroke/epidemiology , Stroke/etiology , Middle Aged , Aged , Air Pollutants/adverse effects , Air Pollutants/analysis , Male , Female , Air Pollution/adverse effects , Adult , Aged, 80 and over , Environmental Exposure/adverse effects
6.
Commun Biol ; 7(1): 699, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849594

ABSTRACT

Caspase-4 (CASP4) is a member of the inflammatory caspase subfamily and promotes inflammation. Here, we report that CASP4 in lung adenocarcinoma cells contributes to both tumor progression via angiogenesis and tumor hyperkinesis and tumor cell killing in response to high interferon (IFN)-γ levels. We observe that elevated CASP4 expression in the primary tumor is associated with cancer progression in patients with lung adenocarcinoma. Further, CASP4 knockout attenuates tumor angiogenesis and metastasis in subcutaneous tumor mouse models. CASP4 enhances the expression of genes associated with angiogenesis and cell migration in lung adenocarcinoma cell lines through nuclear factor kappa-light chain-enhancer of activated B cell signaling without stimulation by lipopolysaccharide or tumor necrosis factor. CASP4 is induced by endoplasmic reticulum stress or IFN-γ via signal transducer and activator of transcription 1. Most notably, lung adenocarcinoma cells with high CASP4 expression are more prone to IFN-γ-induced pyroptosis than those with low CASP4 expression. Our findings indicate that the CASP4 level in primary lung adenocarcinoma can predict metastasis and responsiveness to high-dose IFN-γ therapy due to cancer cell pyroptosis.


Subject(s)
Adenocarcinoma of Lung , Caspases, Initiator , Interferon-gamma , Lung Neoplasms , Pyroptosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Animals , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice , Caspases, Initiator/metabolism , Caspases, Initiator/genetics , Cell Line, Tumor , Neoplasm Metastasis , Gene Expression Regulation, Neoplastic
7.
Cell Div ; 19(1): 20, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867228

ABSTRACT

The silencing regulatory factor 2-like protein 3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+) dependent deacetylase located primarily in the mitochondria. This protein plays an important role in oxidative stress, energy metabolism, and autophagy in multicellular organisms. Autophagy (macroautophagy) is primarily a cytoprotective mechanism necessary for intracellular homeostasis and the synthesis, degradation, and recycling of cellular products. Autophagy can influence the progression of several neural, cardiac, hepatic, and renal diseases and can also contribute to the development of fibrosis, diabetes, and many types of cancer. Recent studies have shown that SIRT3 has an important role in regulating autophagy. Therefore in this study, we aimed to perform a literature review to summarize the role of SIRT3 in the regulation of cellular autophagy. The findings of this study could be used to identify new drug targets for SIRT3-related diseases. Methods: A comprehensive literature review of the mechanism involved behind SIRT3 and autophagy-related diseases was performed. Relevant literature published in Pubmed and Web of Science up to July 2023 was identified using the keywords "silencing regulatory factor 2-like protein 3", "SIRT3" and "autophagy".

8.
Toxicology ; 506: 153845, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801935

ABSTRACT

We investigated the intratracheal instillation of Polyacrylic acid (PAA) in rats to determine if it would cause pulmonary disorders, and to see what factors would be associated with the pathological changes. Male F344 rats were intratracheally instilled with low (0.2 mg/rat) and high (1.0 mg/rat) doses of PAA. They were sacrificed at 3 days, 1 week, 1 month, 3 months, and 6 months after PAA exposure to examine inflammatory and fibrotic changes in the lungs. There was a persistent increase in the neutrophil count, lactate dehydrogenase (LDH) levels, cytokine-induced neutrophil chemoattractant (CINC) values in bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in lung tissue. Transforming growth factor-beta 1 (TGF-ß1), a fibrotic factor, showed a sustained increase in the BALF until 6 months after intratracheal instillation, and connective tissue growth factor (CTGF) in lung tissue was elevated at 3 days after exposure. Histopathological findings in the lung tissue showed persistent (more than one month) inflammation, fibrotic changes, and epithelial-mesenchymal transition (EMT) changes. There was also a strong correlation between TGF-ß1 in the BALF and, especially, in the fibrosis score of histopathological specimens. Intratracheal instillation of PAA induced persistent neutrophilic inflammation, fibrosis, and EMT in the rats' lungs, and TGF-ß1 and CTGF appeared to be associated with the persistent fibrosis.


Subject(s)
Acrylic Resins , Bronchoalveolar Lavage Fluid , Connective Tissue Growth Factor , Pulmonary Fibrosis , Rats, Inbred F344 , Transforming Growth Factor beta1 , Animals , Male , Transforming Growth Factor beta1/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Acrylic Resins/toxicity , Acrylic Resins/administration & dosage , Connective Tissue Growth Factor/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Rats , Lung/drug effects , Lung/pathology , Lung/metabolism , L-Lactate Dehydrogenase/metabolism , Heme Oxygenase-1/metabolism , Chemokine CXCL1/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Heme Oxygenase (Decyclizing)
9.
Acta Pharmacol Sin ; 45(8): 1727-1739, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38605180

ABSTRACT

Antibody drug conjugate (ADC) therapy has become one of the most promising approaches in cancer immunotherapy. Bispecific targeting could enhance the efficacy and safety of ADC by improving its specificity, affinity and internalization. In this study we constructed a HER2/HER3-targeting bispecific ADC (BsADC) and characterized its physiochemical properties, target specificity and internalization in vitro, and assessed its anti-tumor activities in breast cancer cell lines and in animal models. The HER2/HER3-targeting BsADC had a drug to antibody ratio (DAR) of 2.89, displayed a high selectivity against the target JIMT-1 breast cancer cells in vitro, as well as a slightly higher level of internalization than HER2- or HER3-monospecific ADCs. More importantly, the bispecific ADC potently inhibited the viability of MCF7, JIMT-1, BT474, BxPC-3 and SKOV-3 cancer cells in vitro. In JIMT-1 breast cancer xenograft mice, a single injection of bispecific ADC (3 mg/kg, i.v.) significantly inhibited the tumor growth with an efficacy comparable to that caused by combined injection of HER2 and HER3-monospecific ADCs (3 mg/kg for each). Our study demonstrates that the bispecific ADC concept can be applied to development of more potent new cancer therapeutics than the monospecific ADCs.


Subject(s)
Antibodies, Bispecific , Breast Neoplasms , Immunoconjugates , Receptor, ErbB-2 , Receptor, ErbB-3 , Humans , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Female , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/metabolism , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Immunoconjugates/chemistry , Breast Neoplasms/drug therapy , Receptor, ErbB-2/antagonists & inhibitors , Cell Line, Tumor , Mice , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects
10.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612383

ABSTRACT

Polyacrylic acid (PAA), an organic chemical, has been used as an intermediate in the manufacture of pharmaceuticals and cosmetics. It has been suggested recently that PAA has a high pulmonary inflammatory and fibrotic potential. Although endoplasmic reticulum stress is induced by various external and intracellular stimuli, there have been no reports examining the relationship between PAA-induced lung injury and endoplasmic reticulum stress. F344 rats were intratracheally instilled with dispersed PAA (molecular weight: 269,000) at low (0.5 mg/mL) and high (2.5 mg/mL) doses, and they were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure. PAA caused extensive inflammation and fibrotic changes in the lungs' histopathology over a month following instillation. Compared to the control group, the mRNA levels of endoplasmic reticulum stress markers Bip and Chop in BALF were significantly increased in the exposure group. In fluorescent immunostaining, both Bip and Chop exhibited co-localization with macrophages. Intratracheal instillation of PAA induced neutrophil inflammation and fibrosis in the rat lung, suggesting that PAA with molecular weight 269,000 may lead to pulmonary disorder. Furthermore, the presence of endoplasmic reticulum stress in macrophages was suggested to be involved in PAA-induced lung injury.


Subject(s)
Acrylates , Lung Injury , Polymers , Rats , Animals , Rats, Inbred F344 , Endoplasmic Reticulum Stress , Inflammation , Lung
11.
Article in English | MEDLINE | ID: mdl-38628818

ABSTRACT

Purpose: Results from studies of extended capecitabine after the standard adjuvant chemotherapy in early stage triple-negative breast cancer (TNBC) were inconsistent, and only low-dose capecitabine from the SYSUCC-001 trial improved disease-free survival (DFS). Adjustment of the conventional adjuvant chemotherapy doses affect the prognosis and may affect the efficacy of subsequent treatments. This study investigated whether the survival benefit of the SYSUCC-001 trial was affected by dose adjustment of the standard adjuvant chemotherapy or not. Patients and Methods: We reviewed the adjuvant chemotherapy regimens before the extended capecitabine in the SYSUCC-001 trial. Patients were classified into "consistent" (standard acceptable dose) and "inconsistent" (doses lower than acceptable dose) dose based on the minimum acceptable dose range in the landmark clinical trials. Cox proportional hazards model was used to investigate the impact of dose on the survival outcomes. Results: All 434 patients in SYSUCC-001 trial were enrolled in this study. Most of patients administered the anthracycline-taxane regimen accounted for 88.94%. Among patients in the "inconsistent" dose, 60.8% and 47% received lower doses of anthracycline and taxane separately. In the observation group, the "inconsistent" dose of anthracycline and taxane did not affect DFS compared with the "consistent" dose. Moreover, in the capecitabine group, the "inconsistent" anthracycline dose did not affect DFS compared with the "consistent" dose. However, patients with "consistent" taxane doses benefited significantly from extended capecitabine (P=0.014). The sufficient dose of adjuvant taxane had a positive effect of extended capecitabine (hazard ratio [HR] 2.04; 95% confidence interval [CI] 1.02 to 4.06). Conclusion: This study found the dose reduction of adjuvant taxane might negatively impact the efficacy of capecitabine. Therefore, the reduction of anthracycline dose over paclitaxel should be given priority during conventional adjuvant chemotherapy, if patients need dose reduction and plan for extended capecitabine.

12.
J Bone Miner Metab ; 42(4): 421-427, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38326630

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a lifestyle-related disease that develops in middle-aged and older adults, often due to smoking habits, and has been noted to cause bone fragility. COPD is a risk factor for osteoporosis and fragility fracture, and a high prevalence of osteoporosis and incidence of vertebral fractures have been shown in patients with COPD. Findings of lung tissue analysis in patients with COPD are primarily emphysema with a loss of alveolar septal walls, and the severity of pulmonary emphysema is negatively correlated with thoracic spine bone mineral density (BMD). On the other hand, epidemiological studies on COPD and fracture risk have reported a BMD-independent increase in fracture risk; however, verification in animal models and human bone biopsy samples has been slow, and the essential pathogenesis has not been elucidated. The detailed pathological/molecular mechanisms of musculoskeletal complications in patients with COPD are unknown, and basic research is needed to elucidate the mechanisms. This paper discusses the impacts of COPD on bone strength, focusing on findings in animal models in terms of bone microstructure, bone metabolic dynamics, and material properties.


Subject(s)
Bone Density , Bone and Bones , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/pathology , Humans , Bone Density/physiology , Animals , Bone and Bones/pathology , Bone and Bones/physiopathology , Osteoporosis/physiopathology , Osteoporosis/pathology , Fractures, Bone/pathology , Fractures, Bone/physiopathology , Fractures, Bone/epidemiology
13.
Int J Mol Sci ; 25(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338870

ABSTRACT

Amyloidosis involves the deposition of misfolded proteins. Even though it is caused by different pathogenic mechanisms, in aggregate, it shares similar features. Here, we tested and confirmed a hypothesis that an amyloid antibody can be engineered by a few mutations to target a different species. Amyloid light chain (AL) and ß-amyloid peptide (Aß) are two therapeutic targets that are implicated in amyloid light chain amyloidosis and Alzheimer's disease, respectively. Though crenezumab, an anti-Aß antibody, is currently unsuccessful, we chose it as a model to computationally design and prepare crenezumab variants, aiming to discover a novel antibody with high affinity to AL fibrils and to establish a technology platform for repurposing amyloid monoclonal antibodies. We successfully re-engineered crenezumab to bind both Aß42 oligomers and AL fibrils with high binding affinities. It is capable of reversing Aß42-oligomers-induced cytotoxicity, decreasing the formation of AL fibrils, and alleviating AL-fibrils-induced cytotoxicity in vitro. Our research demonstrated that an amyloid antibody could be engineered by a few mutations to bind new amyloid sequences, providing an efficient way to reposition a therapeutic antibody to target different amyloid diseases.


Subject(s)
Alzheimer Disease , Amyloidosis , Antibodies, Monoclonal, Humanized , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Amyloid/metabolism , Amyloid beta-Peptides/immunology , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins/therapeutic use , Amyloidosis/therapy , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Peptide Fragments/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use
14.
Shanghai Kou Qiang Yi Xue ; 32(4): 351-355, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-38044726

ABSTRACT

PURPOSE: To evaluate the effects of bleaching combined with Er:YAG laser or Nd:YAG laser on bond strength and microleakage of resin fillings on enamel surface. METHODS: Sixty-four pieces of enamel specimens prepared from isolated teeth were randomly divided into 4 groups(n=16): control group, simple bleaching group, bleaching combined with Er: YAG laser group and bleaching combined with Nd:YAG laser group. Then the shear bond strength and the depth of microleakage were tested, and the fracture mode of the specimen was observed under microscope. SPSS 26.0 software package was used for statistical analysis. RESULTS: After bleaching simply, the bond strength of the restoration was significantly decreased, and the marginal microleakage was significantly increased(P<0.05). There was no significant difference in shear bond strength and microleakage depth between the group bleaching combined with Er: YAG laser and control group(P>0.05). The shear bond strength after bleaching combined with Nd:YAG laser was significantly reduced (P<0.05), but there was no significant difference in the depth of microleakage compared with unbleached microleakage(P>0.05). Bonding interface fracture was the main fracture mode for all groups. CONCLUSIONS: Compared to traditional bleaching, bleaching combined with laser has certain clinical advantages due to its less influence on bond strength and microleakage of resin fillings.


Subject(s)
Dental Bonding , Lasers, Solid-State , Tooth Bleaching , Tooth , Lasers, Solid-State/therapeutic use , Dental Enamel , Tooth Bleaching/adverse effects , Shear Strength
15.
Acta Pharm Sin B ; 13(12): 4856-4874, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045049

ABSTRACT

COVID-19 is caused by coronavirus SARS-CoV-2. Current systemic vaccines generally provide limited protection against viral replication and shedding within the airway. Recombinant VSV (rVSV) is an effective vector which inducing potent and comprehensive immunities. Currently, there are two clinical trials investigating COVID-19 vaccines based on VSV vectors. These vaccines were developed with spike protein of WA1 which administrated intramuscularly. Although intranasal route is ideal for activating mucosal immunity with VSV vector, safety is of concern. Thus, a highly attenuated rVSV with three amino acids mutations in matrix protein (VSVMT) was developed to construct safe mucosal vaccines against multiple SARS-CoV-2 variants of concern. It demonstrated that spike protein mutant lacking 21 amino acids in its cytoplasmic domain could rescue rVSV efficiently. VSVMT indicated improved safeness compared with wild-type VSV as the vector encoding SARS-CoV-2 spike protein. With a single-dosed intranasal inoculation of rVSVΔGMT-SΔ21, potent SARS-CoV-2 specific neutralization antibodies could be stimulated in animals, particularly in term of mucosal and cellular immunity. Strikingly, the chimeric VSV encoding SΔ21 of Delta-variant can induce more potent immune responses compared with those encoding SΔ21 of Omicron- or WA1-strain. VSVMT is a promising platform to develop a mucosal vaccine for countering COVID-19.

16.
J Geriatr Cardiol ; 20(11): 779-787, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38098467

ABSTRACT

BACKGROUND: The benefits of healthy lifestyles are well recognized. However, the extent to which improving unhealthy lifestyles reduces cardiovascular disease (CVD) risk needs to be discussed. We evaluated the impact of lifestyle improvement on CVD incidence using data from the China-PAR project (Prediction for Atherosclerotic Cardiovascular Disease Risk in China). METHODS: A total of 12,588 participants free of CVD were followed up for three visits after the baseline examination. Changes in four lifestyle factors (LFs) (smoking, diet, physical activity, and alcohol consumption) were assessed through questionnaires from the baseline to the first follow-up visit. Cox proportional hazard models were used to estimate hazard ratios (HRs) and corresponding 95% confidence intervals (CIs). The risk advancement periods (RAPs: the age difference between exposed and unexposed participants reaching the same incident CVD risk) and population-attributable risk percentage (PAR%) were also calculated. RESULTS: A total of 909 incident CVD cases occurred over a median follow-up of 11.14 years. Compared with maintaining 0-1 healthy LFs, maintaining 3-4 healthy LFs was associated with a 40% risk reduction of incident CVD (HR = 0.60, 95% CI: 0.45-0.79) and delayed CVD risk by 6.31 years (RAP: -6.31 [-9.92, -2.70] years). The PAR% of maintaining 3-4 unhealthy LFs was 22.0% compared to maintaining 0-1 unhealthy LFs. Besides, compared with maintaining two healthy LFs, improving healthy LFs from 2 to 3-4 was associated with a 23% lower risk of CVD (HR = 0.77, 95% CI: 0.60-0.98). CONCLUSIONS: Long-term sustenance of healthy lifestyles or improving unhealthy lifestyles can reduce and delay CVD risk.

17.
Cancer Lett ; 572: 216355, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37597651

ABSTRACT

Chimeric antigen receptor (CAR)-T cell immunotherapy is highly effective against hematological neoplasms. However, owing to tumor variability, low antigen specificity, and impermanent viability of CAR-T cells, their use in the treatment of solid tumors is limited. Here, a novel CAR-T cell targeting B7-H3 and incorporating a 4-1BB costimulatory molecule with STAT3-and STAT5-related activation motifs was constructed using lentivirus transduction. B7-H3, a tumor-associated antigen, and its scFv antibody endowed CAR-T cells with tumor-specific targeting capabilities. Moreover, the integration of the trIL2RB and YRHQ motifs stimulated STAT5 and STAT3 in an antigen-dependent manner, inducing a remarkable increase in the proliferation and survival of CAR-T cells via the activation of the JAK-STAT signaling pathway. Besides, the proportion of less-differentiated T cells increased among BB-trIL2RB-z(YRHQ) CAR-T cells. Moreover, BB-trIL2RB-z(YRHQ) effectively inhibited ovarian cancer (OC) and triple-negative breast cancer (TNBC) in vivo at low doses, without high serum levels of inflammatory cytokines and organ toxicity. Therefore, our study proposes a combination of elements for the construction of superior pluripotent CAR-T cells to provide an effective strategy for the treatment of intractable solid tumors.


Subject(s)
Ovarian Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/therapy , STAT5 Transcription Factor , Ovarian Neoplasms/therapy , Immunotherapy
18.
Sci Total Environ ; 901: 165972, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37532039

ABSTRACT

The mobility and bioavailability of Pb can be significantly reduced by Pb-bearing minerals encapsulation in jarosite-group minerals, especially in sulfate-rich environments. However, the kinetic pathways and mechanisms of jarosite-group minerals formations on Pb-bearing mineral surfaces are not well understood. Here, time-resolved heterogeneous (Na, Pb)-jarosite nucleation and growth on anglesite were explored to gain insights into the encapsulation mechanisms. The initial dissolution of anglesite were clearly distinguished, and for the first time, the facet-specific heterogeneous nucleation of (Na, Pb)-jarosite on anglesite was demonstrated. Density functional theory calculations revealed higher adsorption energies and electronic interactions of FeSO4+ complex on anglesite (020), (140), (110) facets, attributed to the preferential nucleation of (Na, Pb)-jarosite on these facets, which resulted in effective passivation of the facets resistant to dissolution. An interpretation was proposed where (Na, Pb)-jarosite grew via a particle-attachment pathway involving the formation of amorphous intermediate, and subsequently, it transformed to the crystalline phase by solid-state conversion. These observations might improve the mechanistic understanding of interface interactions between slightly soluble Pb-bearing minerals and iron minerals, with implications for Pb immobilization in sulfate-rich environments.

19.
Immun Inflamm Dis ; 11(8): e991, 2023 08.
Article in English | MEDLINE | ID: mdl-37647430

ABSTRACT

INTRODUCTION: Interleukin-38 (IL-38) is a new type of anti-inflammatory cytokine, which is mainly expressed in the immunity-related organs and is involved in various diseases including cardiovascular and cerebrovascular diseases, lung diseases, viral infectious diseases and autoimmune diseases. AIM: This review aims to detail the biological function, receptors and signaling of IL-38, which highlights its therapeutic potential in related diseases. CONCLUSION: This article provides a comprehensive review of the association between interleukin-38 and related diseases, using interleukin-38 as a keyword and searching the relevant literature through Pubmed and Web of science up to July 2023.


Subject(s)
Autoimmune Diseases , Humans , Autoimmune Diseases/genetics , Cytokines , Signal Transduction , Interleukins/genetics
20.
Curr Med Sci ; 43(4): 794-802, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37498408

ABSTRACT

OBJECTIVE: Histone modification has a significant effect on gene expression. Enhancer of zeste homolog 2 (EZH2) contributes to the epigenetic silencing of target chromatin through its roles as a histone-lysine N-methyltransferase enzyme. The development of anoikis resistance in tumor cells is considered to be a critical step in the metastatic process of primary malignant tumors. The purpose of this study was to investigate the effect and mechanism of anoikis resistance in ovarian adenocarcinoma peritoneal metastasis. METHODS: In addition to examining EZH2 protein expression in ovarian cancer omental metastatic tissues, we established a model of ovarian cancer cell anoikis and a xenograft tumor model in nude mice. Anoikis resistance and ovarian cancer progression were tested after EZH2 and N6-methyladenosine (m6A) levels were modified. RESULTS: EZH2 expression was significantly higher in ovarian cancer omental metastatic tissues than in normal ovarian tissues. Reducing the level of EZH2 decreased the level of m6A and ovarian cancer cell anoikis resistance in vitro and inhibited ovarian cancer progression in vivo. M6a regulation altered the effect of EZH2 on anoikis resistance. CONCLUSION: Our results indicate that EZH2 contributes to anoikis resistance and promotes ovarian adenocarcinoma abdominal metastasis by m6A modification. Our findings imply the potential of the clinical application of m6A and EZH2 for patients with ovarian cancer.


Subject(s)
Adenocarcinoma , Ovarian Neoplasms , Peritoneal Neoplasms , Animals , Female , Humans , Mice , Adenocarcinoma/pathology , Anoikis/genetics , Carcinoma, Ovarian Epithelial/genetics , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Mice, Nude , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/secondary
SELECTION OF CITATIONS
SEARCH DETAIL