Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1341012, 2024.
Article in English | MEDLINE | ID: mdl-38655079

ABSTRACT

Background: Numerous studies have cast light on the relationship between the gastric microbiota and gastric carcinogenesis. In this study, we conducted a bibliometric analysis of the relevant literature in the field of gastric cancer and the gastric microbiota and clarified its research status, hotspots, and development trends. Materials and methods: Publications were retrieved from the Web of Science Core Collection on 18 July 2023. CiteSpace 6.2.R4, VOSviewer 1.6.19.0, and Biblioshiny were used for the co-occurrence and cooperation analyses of countries, institutions, authors, references, and keywords. A keyword cluster analysis and an emergence analysis were performed, and relevant knowledge maps were drawn. Results: The number of published papers in this field totaled 215 and showed an increasing trend. The analysis of funding suggested that the input in this field is increasing steadily. China had the highest number of publications, while the United States had the highest betweenness centrality. Baylor College of Medicine published the most articles cumulatively. Both Ferreira RM and Cooker OO had the highest citation frequency. The journal Helicobacter showed the most interest in this field, while Gut provided a substantial research foundation. A total of 280 keywords were obtained using CiteSpace, which were primarily focused on the eradication and pathogenic mechanisms of Helicobacter pylori, as well as the application of the gastric microbiota in the evaluation and treatment of gastric cancer. The burst analysis suggested that in the future, research may focus on the application of gastric microorganisms, particularly Fusobacterium nucleatum, in the diagnosis and treatment of gastric cancer, along with their pathogenic mechanisms. Conclusion: Current studies have been tracking the eradication of Helicobacter pylori and its pathogenic mechanisms, as well as changes in the gastric microbiota during gastric carcinogenesis. Future research may focus on the clinical application and pathogenesis of stomach microorganisms through bacteria such as Fusobacterium nucleatum.

2.
Cell Mol Gastroenterol Hepatol ; 15(1): 179-195, 2023.
Article in English | MEDLINE | ID: mdl-36096451

ABSTRACT

Chronic hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma. However, the function and mechanism of the effect of HBV on host protein ubiquitination remain largely unknown. We aimed at characterizing whether and how HBV promotes self-replication by affecting host protein ubiquitination. In this study, we identified UBXN7, a novel inhibitor for nuclear factor kappa B (NF-κB) signaling, was degraded via interaction with HBV X protein (HBx) to activate NF-κB signaling and autophagy, thereby affecting HBV replication. The expression of UBXN7 was analyzed by Western blot and quantitative reverse transcription polymerase chain reaction in HBV-transfected hepatoma cells and HBV-infected primary human hepatocytes (PHHs). The effects of UBXN7 on HBV replication were analyzed by using in vitro and in vivo assays, including stable isotope labeling by amino acids in cell culture (SILAC) analysis. Changes in HBV replication and the associated molecular mechanisms were analyzed in hepatoma cell lines. SILAC analyses showed that the ubiquitination of UBXN7 was significantly increased in HepG2.2.15 cells compared with control cells. After HBV infection, HBx protein interacted with UBXN7 to promote K48-linked ubiquitination of UBXN7 at K99, leading to UBXN7 degradation. On the other hand, UBXN7 interacted with the ULK domain of IκB kinase ß through its ubiquitin-associating domain to facilitate its degradation. This in turn reduced NF-κB signaling, leading to reduced autophagy and consequently decreased HBV replication.


Subject(s)
Hepatitis B virus , Trans-Activators , Viral Regulatory and Accessory Proteins , Virus Replication , Humans , Hepatitis B virus/physiology , Hepatitis B, Chronic , NF-kappa B/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Trans-Activators/metabolism , Adaptor Proteins, Signal Transducing/metabolism
3.
Cell Biosci ; 11(1): 75, 2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33865438

ABSTRACT

Hepatitis B virus (HBV) infection remains a major health issue worldwide and the leading cause of cirrhosis and hepatocellular carcinoma (HCC). It has been reported previously that HBV invasion can extensively alter transcriptome, the proteome of exosomes and host cell lipid rafts. The impact of HBV on host proteins through regulating their global post-translational modifications (PTMs), however, is not well studied. Viruses have been reported to exploit cellular processes by enhancing or inhibiting the ubiquitination of specific substrates. Nevertheless, host cell physiology in terms of global proteome and ubiquitylome has not been addressed yet. Here by using HBV-integrated HepG2.2.15 model cell line we first report that HBV significantly modify the host global ubiquitylome. As currently the most widely used HBV cell culture model, HepG2.2.15 can be cultivated for multiple generations for protein labeling, and can replicate HBV, express HBV proteins and secrete complete HBV Dane particles, which makes it a suitable cell line for ubiquitylome analysis to study HBV replication, hepatocyte immune response and HBV-related HCC progression. Our previous experimental results showed that the total ubiquitination level of HepG2.2.15 cell line was significantly higher than that of the corresponding parental HepG2 cell line. By performing a Ubiscan quantification analysis based on stable isotope labeling of amino acids in cell culture (SILAC) of HepG2.2.15 and HepG2 cell lines, we identified a total of 7188 proteins and the protein levels of nearly 19% of them were changed over 2-folds. We further identified 3798 ubiquitinated Lys sites in 1476 host proteins with altered ubiquitination in response to HBV. Our results also showed that the global proteome and ubiquitylome were negatively correlated, indicating that ubiquitination might be involved in the degradation of host proteins upon HBV integration. We first demonstrated the ubiquitination change of VAMP3, VAMP8, DNAJB6, RAB8A, LYN, VDAC2, OTULIN, SLC1A4, SLC1A5, HGS and TOLLIP. In addition, we described 5 novel host factors SLC1A4, SLC1A5, EIF4A1, TOLLIP and BRCC36 that efficiently reduced the amounts of secreted HBsAg and HBeAg. Overall, the HBV-mediated host proteome and ubiquitylome change we reported will provide a valuable resource for further investigation of HBV pathogenesis and host-virus interaction networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...