Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(6): 060502, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32845666

ABSTRACT

We present an experimental approach to construct a dephrasure channel that contains both dephasing and erasure noises and can be used as an efficient tool to study the superadditivity of coherent information. Using a three-fold dephrasure channel, the superadditivity of coherent information is observed, and a substantial gap is found between the zero single-letter coherent information and zero quantum capacity. Particularly, we find that, when the coherent information of n channel uses is zero, with a larger number of channel uses the quantum capacity becomes positive. These phenomena exhibit a more obvious superadditivity of coherent information than previous works and demonstrate a higher threshold for nonzero quantum capacity. Such novel channels built in our experiment also can provide a useful platform to study the nonadditive properties of coherent information and quantum channel capacity.

2.
Phys Rev Lett ; 124(23): 230402, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32603176

ABSTRACT

Comprehensive study on parity-time (PT) symmetric systems demonstrates the novel properties and innovative application of non-Hermitian physics in recent years. In the quantum regime, PT symmetric physics exhibits unique quantum dynamical behaviors such as spontaneous state-distinguishability oscillation. However, the construction and control of a PT symmetric quantum system are still challenging, that and restrict the experimental investigation of PT symmetric quantum nature and application. In this Letter, we propose and construct a recycling-structure PT symmetric quantum simulator for the first time, which can effectively simulate the discrete-time dynamical process of a PT symmetric quantum system in both unbroken and broken phases, to be different from our previous work [J.-S. Tang, et al., Nat. Photonics 10, 642 (2016)]. We investigate the dynamical features of quantum state distinguishability based on the PT symmetric simulator. Our results demonstrate the novel PT symmetric quantum dynamics characterized by the periodical oscillation of state distinguishability in the unbroken phase, and the monotonic decay of that in the broken phase. This work also provides a practical experimental platform for the future intensive study of PT symmetric quantum dynamics.

3.
Phys Rev Lett ; 125(24): 240506, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33412046

ABSTRACT

PT-symmetric theory is developed to extend quantum mechanics to a complex region, but it wins its great success first in classical systems, for example, optical waveguides and electric circuits, etc., because there are so many counterintuitive phenomena and striking applications, including unidirectional light transport, PT-enhanced sensors (one kind of exceptional-point-based sensor), and wireless power transfer. However, these phenomena and applications are mostly based on the ability to approach a PT-symmetric broken region, which makes it difficult to transfer them to the quantum regime, since the broken quantum PT-symmetric system has not been constructed effectively, until recently several methods have been raised. Here, we construct a quantum PT-symmetric system assisted by weak measurement, which can effectively transit from the unbroken region to the broken region. The full energy spectrum including the real and imaginary parts is directly measured using weak values. Furthermore, based on the ability of approaching a broken region, we for the first time translate the previously mentioned PT-enhanced sensor into the quantum version, and investigate its various features that are associated to the optimal conditions for sensitivity enhancement. In this experiment, we obtain an enhancement of 8.856 times over the conventional Hermitian sensor. Moreover, by separately detecting the real and imaginary parts of energy splitting, we can derive the additional information of the direction of perturbations. Our work paves the way of leading classical interesting PT phenomena and applications to their quantum counterparts. More generally, since the PT system is a subset of non-Hermitian systems, our work will be also helpful in the studies of general exception point in the quantum regime.

4.
Phys Rev Lett ; 120(6): 060406, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29481228

ABSTRACT

The spectral theorem of von Neumann has been widely applied in various areas, such as the characteristic spectral lines of atoms. It has been recently proposed that dynamical evolution also possesses spectral lines. As the most intrinsic property of evolution, the behavior of these spectra can, in principle, exhibit almost every feature of this evolution, among which the most attractive topic is non-Markovianity, i.e., the memory effects during evolution. Here, we develop a method to detect these spectra, and moreover, we experimentally examine the relation between the spectral behavior and non-Markovianity by engineering the environment to prepare dynamical maps with different non-Markovian properties and then detecting the dynamical behavior of the spectral values. These spectra will lead to a witness for essential non-Markovianity. We also experimentally verify another simplified witness method for essential non-Markovianity. Interestingly, in both cases, we observe the sudden transition from essential non-Markovianity to something else. Our work shows the role of the spectra of evolution in the studies of non-Makovianity and provides the alternative methods to characterize non-Markovian behavior.

5.
Phys Rev Lett ; 118(2): 020403, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28128592

ABSTRACT

Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior-the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l_{1} norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

SELECTION OF CITATIONS
SEARCH DETAIL