Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nat Rev Urol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112733

ABSTRACT

High-risk localized prostate cancer remains a lethal disease with high rates of recurrence, metastases and death, despite attempts at curative local treatment including surgery. Disease recurrence is thought to be a result of failure of local control and occult micrometastases. Neoadjuvant strategies before surgery have been effective in many cancers, but, to date, none has worked in this setting for prostate cancer. Prostate-specific membrane antigen (PSMA)-based theranostics is an exciting and rapidly evolving field in prostate cancer. The novel intravenous radionuclide therapy, [177Lu]Lu-PSMA-617 (lutetium PSMA) has been shown to be effective in treating men with metastatic castration-resistant prostate cancer, targeting cells expressing PSMA throughout the body. When given in a neoadjuvant setting, lutetium PSMA might also improve long-term oncological outcomes in men with high-risk localized disease. A component of radiotherapy is potentially an immunogenic form of cancer cell death. Lutetium PSMA could cause cancer cell death, resulting in release of tumour antigens and induction of a tumour-specific systemic immune response. This targeted radioligand treatment has the potential to treat local and systemic tumour sites by directly targeting cells that express PSMA, but might also act indirectly via this systemic immune response. In selected patients, lutetium PSMA could potentially be combined with systemic immunotherapies to augment the antitumour T cell response, and this might produce long-lasting immunity in prostate cancer.

2.
J Allergy Clin Immunol ; 153(3): 672-683.e6, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37931708

ABSTRACT

BACKGROUND: Patients with severe asthma can present with eosinophilic type 2 (T2), neutrophilic, or mixed inflammation that drives airway remodeling and exacerbations and represents a major treatment challenge. The common ß (ßc) receptor signals for 3 cytokines, GM-CSF, IL-5, and IL-3, which collectively mediate T2 and neutrophilic inflammation. OBJECTIVE: To determine the pathogenesis of ßc receptor-mediated inflammation and remodeling in severe asthma and to investigate ßc antagonism as a therapeutic strategy for mixed granulocytic airway disease. METHODS: ßc gene expression was analyzed in bronchial biopsy specimens from patients with mild-to-moderate and severe asthma. House dust mite extract and Aspergillus fumigatus extract (ASP) models were used to establish asthma-like pathology and airway remodeling in human ßc transgenic mice. Lung tissue gene expression was analyzed by RNA sequencing. The mAb CSL311 targeting the shared cytokine binding site of ßc was used to block ßc signaling. RESULTS: ßc gene expression was increased in patients with severe asthma. CSL311 potently reduced lung neutrophils, eosinophils, and interstitial macrophages and improved airway pathology and lung function in the acute steroid-resistant house dust mite extract model. Chronic intranasal ASP exposure induced airway inflammation and fibrosis and impaired lung function that was inhibited by CSL311. CSL311 normalized the ASP-induced fibrosis-associated extracellular matrix gene expression network and strongly reduced signatures of cellular inflammation in the lung. CONCLUSIONS: ßc cytokines drive steroid-resistant mixed myeloid cell airway inflammation and fibrosis. The anti-ßc antibody CSL311 effectively inhibits mixed T2/neutrophilic inflammation and severe asthma-like pathology and reverses fibrosis gene signatures induced by exposure to commonly encountered environmental allergens.


Subject(s)
Asthma , Receptors, Cytokine , Mice , Animals , Humans , Receptors, Cytokine/metabolism , Airway Remodeling , Lung , Cytokines/metabolism , Mice, Transgenic , Inflammation , Allergens , Steroids/therapeutic use , Fibrosis , Pyroglyphidae
3.
Nat Commun ; 14(1): 2697, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188662

ABSTRACT

Spatial proteomics technologies have revealed an underappreciated link between the location of cells in tissue microenvironments and the underlying biology and clinical features, but there is significant lag in the development of downstream analysis methods and benchmarking tools. Here we present SPIAT (spatial image analysis of tissues), a spatial-platform agnostic toolkit with a suite of spatial analysis algorithms, and spaSim (spatial simulator), a simulator of tissue spatial data. SPIAT includes multiple colocalization, neighborhood and spatial heterogeneity metrics to characterize the spatial patterns of cells. Ten spatial metrics of SPIAT are benchmarked using simulated data generated with spaSim. We show how SPIAT can uncover cancer immune subtypes correlated with prognosis in cancer and characterize cell dysfunction in diabetes. Our results suggest SPIAT and spaSim as useful tools for quantifying spatial patterns, identifying and validating correlates of clinical outcomes and supporting method development.


Subject(s)
Neoplasms , Humans , Algorithms , Image Processing, Computer-Assisted/methods , Proteomics , Tumor Microenvironment
4.
Haematologica ; 108(1): 83-97, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35770527

ABSTRACT

Patients with refractory relapsed multiple myeloma respond to combination treatment with elotuzumab and lenalidomide. The mechanisms underlying this observation are not fully understood. Furthermore, biomarkers predictive of response have not been identified to date. To address these issues, we used a humanized myeloma mouse model and adoptive transfer of human natural killer (NK) cells to show that elotuzumab and lenalidomide treatment controlled myeloma growth, and this was mediated through CD16 on NK cells. In co-culture studies, we showed that peripheral blood mononuclear cells from a subset of patients with refractory relapsed multiple myeloma were effective killers of OPM2 myeloma cells when treated with elotuzumab and lenalidomide, and this was associated with significantly increased expression of CD54 on OPM2 cells. Furthermore, elotuzumab- and lenalidomide-induced OPM2 cell killing and increased OPM2 CD54 expression were dependent on both monocytes and NK cells, and these effects were not mediated by soluble factors alone. At the transcript level, elotuzumab and lenalidomide treatment significantly increased OPM2 myeloma cell expression of genes for trafficking and adhesion molecules, NK cell activation ligands and antigen presentation molecules. In conclusion, our findings suggest that multiple myeloma patients require elotuzumab- and lenalidomide-mediated upregulation of CD54 on autologous myeloma cells, in combination with NK cells and monocytes to mediate an effective anti-tumor response. Furthermore, our data suggest that increased myeloma cell CD54 expression levels could be a powerful predictive biomarker for response to elotuzumab and lenalidomide treatment.


Subject(s)
Multiple Myeloma , Animals , Mice , Humans , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Lenalidomide/metabolism , Multiple Myeloma/metabolism , Monocytes/metabolism , Leukocytes, Mononuclear/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Killer Cells, Natural , Dexamethasone/therapeutic use
5.
Cell Death Dis ; 13(9): 777, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36075907

ABSTRACT

Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.


Subject(s)
Prostatic Neoplasms , Tumor Suppressor Protein p53 , Animals , Carcinogenesis/metabolism , Disease Models, Animal , Humans , Male , Mice , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Prostate/metabolism , Prostatic Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
6.
Cancers (Basel) ; 14(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36010941

ABSTRACT

Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.

7.
Nat Commun ; 12(1): 4746, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362900

ABSTRACT

The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.


Subject(s)
Immunity, Cellular , Killer Cells, Natural/immunology , Mucosal-Associated Invariant T Cells/immunology , Neoplasms/immunology , Animals , Antineoplastic Agents , Cell Line, Tumor , Cytokines , Histocompatibility Antigens Class I/genetics , Humans , Immunity , Mice , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Neoplasm Metastasis , Neoplasms/pathology
8.
BMC Cancer ; 21(1): 846, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34294073

ABSTRACT

BACKGROUND: Prostate cancer is caused by genomic aberrations in normal epithelial cells, however clinical translation of findings from analyses of cancer cells alone has been very limited. A deeper understanding of the tumour microenvironment is needed to identify the key drivers of disease progression and reveal novel therapeutic opportunities. RESULTS: In this study, the experimental enrichment of selected cell-types, the development of a Bayesian inference model for continuous differential transcript abundance, and multiplex immunohistochemistry permitted us to define the transcriptional landscape of the prostate cancer microenvironment along the disease progression axis. An important role of monocytes and macrophages in prostate cancer progression and disease recurrence was uncovered, supported by both transcriptional landscape findings and by differential tissue composition analyses. These findings were corroborated and validated by spatial analyses at the single-cell level using multiplex immunohistochemistry. CONCLUSIONS: This study advances our knowledge concerning the role of monocyte-derived recruitment in primary prostate cancer, and supports their key role in disease progression, patient survival and prostate microenvironment immune modulation.


Subject(s)
Gene Expression Profiling , Monocytes/metabolism , Monocytes/pathology , Prostatic Neoplasms/genetics , Transcriptome , Tumor Microenvironment/genetics , Computational Biology/methods , Disease Progression , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Immunophenotyping , Kaplan-Meier Estimate , Male , Molecular Sequence Annotation , Prognosis , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/mortality
10.
Int J Radiat Oncol Biol Phys ; 111(2): 502-514, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34023423

ABSTRACT

PURPOSE: We examined how radiation dose per fraction (DPF) and total dose, as represented by biological effective dose (BED), can independently and differentially affect the immunomodulatory capacity of radiation therapy (RT). METHODS AND MATERIALS: AT3-OVA mammary and MC38 colorectal tumors in C57BL/6 mice were irradiated with rationally selected dose-fractionation schedules, alone or with immune-modulating or -depleting agents. Tumor growth was monitored as a readout of therapeutic response. Flow cytometry and RNA sequencing of mouse tumors and analysis of transcriptomic data sets from irradiated human cancers were used to examine the immunomodulatory effects of the different radiation schedules. RESULTS: In AT3-OVA tumors, radiation DPF rather than BED determined the ability of RT to evoke local antitumor CD8+ T cell responses and synergize with anti-PD-1 therapy. Natural killer cell-mediated control of irradiated tumors was more sensitive to radiation BED. Radiation-induced regulatory T cell (Treg) responses, which were detected in both mouse and human tumors, were a major factor underlying the differential activation of adaptive immunity by radiation DPF and the activity of natural killer cells during the early phase of response to RT. Targeted inhibition of Treg responses within irradiated tumors rescued and enhanced local tumor control by RT and permitted the generation of abscopal and immunologic memory responses, irrespective of radiation schedule. MC38 tumors did not support the induction of an amplified Treg response to RT and were highly vulnerable to its immunoadjuvant effects. CONCLUSIONS: Local radiation-induced Treg responses are influenced by radiation schedule and tumor type and are a critical determinant of the immunoadjuvant potential of RT and its ability to synergize with T cell-targeted immunotherapy.


Subject(s)
Dose Fractionation, Radiation , Neoplasms, Experimental/radiotherapy , T-Lymphocytes, Regulatory/immunology , Adaptive Immunity/radiation effects , Animals , CD8-Positive T-Lymphocytes/immunology , Female , Immunity, Innate/radiation effects , Immunomodulation , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/immunology
11.
Methods Mol Biol ; 2265: 529-541, 2021.
Article in English | MEDLINE | ID: mdl-33704738

ABSTRACT

We describe here a protocol to measure gene expression, T cell receptor (TCR) sequence, and protein expression by single T cells extracted from melanoma, using 10× Chromium technology. This method includes freezing and thawing of the melanoma infiltrating lymphocytes, staining of cells with fluorescent and barcode-conjugated antibodies, sorting of T cells, and loading the cells on the 10× Chromium Controller. After sequencing, analysis includes quality control, genetic demultiplexing to resolve genetically different samples, and T cell clonality and clustering analysis. Single cell RNA sequencing paints the complete portrait of individual T cells, including their clonality and phenotype, and it reconstructs a complete picture of the T cell infiltrate in a tumor that is represented as cell clustering similar to a pointillism painting.


Subject(s)
Lymphocytes, Tumor-Infiltrating/immunology , Melanoma , RNA-Seq , Receptors, Antigen, T-Cell , Single-Cell Analysis , Humans , Melanoma/genetics , Melanoma/immunology , Receptors, Antigen, T-Cell/immunology
12.
Eur Urol Focus ; 7(2): 234-237, 2021 03.
Article in English | MEDLINE | ID: mdl-33172774

ABSTRACT

LuTectomy is an open-label phase 1/2 nonrandomised clinical trial evaluating the dosimetry, efficacy, and toxicity of the lutetium-177-radiolabelled small molecule PSMA-617 in men with high-risk localised/locoregional advanced prostate cancer with high prostate-specific membrane antigen expression who are undergoing radical prostatectomy and pelvic lymph node dissection.


Subject(s)
Prostatectomy , Prostatic Diseases/surgery , Dipeptides , Heterocyclic Compounds, 1-Ring , Humans , Male , Prostate-Specific Antigen
13.
BMC Urol ; 20(1): 171, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33115461

ABSTRACT

BACKGROUND: Understanding the drivers of recurrence in aggressive prostate cancer requires detailed molecular and genomic understanding in order to aid therapeutic interventions. We provide here a case report of histological, transcriptional, proteomic, immunological, and genomic features in a longitudinal study of multiple biopsies from diagnosis, through treatment, and subsequent recurrence. CASE PRESENTATION: Here we present a case study of a male in 70 s with high-grade clinically-localised acinar adenocarcinoma treated with definitive hormone therapy and radiotherapy. The patient progressed rapidly with rising PSA and succumbed without metastasis 52 months after diagnosis. We identified the expression of canonical histological markers of neuroendocrine PC (NEPC) including synaptophysin, neuron-specific enolase and thyroid transcription factor 1, as well as intact AR expression, in the recurrent disease only. The resistant disease was also marked by an extremely low immune infiltrate, extensive genomic chromosomal aberrations, and overactivity in molecular hallmarks of NEPC disease including Aurora kinase and E2F, as well as novel alterations in the cMYB pathway. We also observed that responses to both primary treatments (high dose-rate brachytherapy and androgen deprivation therapies) were consistent with known optimal responses-ruling out treatment inefficacy as a factor in relapse. CONCLUSIONS: These data provide novel insights into a case of locally recurrent aggressive prostate cancer harbouring NEPC pathology, in the absence of detected metastasis.


Subject(s)
Prostatic Neoplasms/genetics , Aged , Drug Resistance, Neoplasm , Humans , Longitudinal Studies , Male , Neuroendocrine Tumors/genetics , Phenotype , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , Transcriptome
14.
Oncoimmunology ; 9(1): 1802979, 2020 08 30.
Article in English | MEDLINE | ID: mdl-32939322

ABSTRACT

The presence of a tumor can alter host immunity systematically. The immune-tumor interaction in one site may impact the local immune microenvironment in distal tissues through the circulation, and therefore influence the efficacy of immunotherapies to distant metastases. Improved understanding of the immune-tumor interactions during immunotherapy treatment in a metastatic setting may enhance the efficacy of current immunotherapies. Here we investigate the response to αPD-1/αCTLA4 and trimAb (αDR5, α4-1BB, αCD40) of 67NR murine breast tumors grown simultaneously in the mammary fat pad (MFP) and lung, a common site of breast cancer metastasis, and compared to tumors grown in isolation. Lung tumors present in isolation were resistant to both therapies. However, in MFP and lung tumor-bearing mice, the presence of a MFP tumor could increase lung tumor response to immunotherapy and decrease the number of lung metastases, leading to complete eradication of lung tumors in a proportion of mice. The MFP tumor influence on lung metastases was mediated by CD8+ T cells, as CD8+ T cell depletion abolished the difference in lung metastases. Furthermore, mice with concomitant MFP and lung tumors had increased tumor specific, effector CD8+ T cells infiltration in the lungs. Thus, we propose a model where tumors in an immunogenic location can give rise to systemic anti-tumor CD8+ T cell responses that could be utilized to target metastatic tumors. These results highlight the requirement for clinical consideration of cross-talk between primary and metastatic tumors for effective immunotherapy for cancers otherwise resistant to immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Lung Neoplasms , Animals , Immunotherapy , Lung Neoplasms/therapy , Lymphocyte Depletion , Mice , Tumor Microenvironment
15.
J Immunother Cancer ; 8(1)2020 06.
Article in English | MEDLINE | ID: mdl-32581061

ABSTRACT

BACKGROUND: Prostate cancer (PCa) has a profoundly immunosuppressive microenvironment and is commonly immune excluded with few infiltrative lymphocytes and low levels of immune activation. High-dose radiation has been demonstrated to stimulate the immune system in various human solid tumors. We hypothesized that localized radiation therapy, in the form of high dose-rate brachytherapy (HDRBT), would overcome immune suppression in PCa. METHODS: To investigate whether HDRBT altered prostate immune context, we analyzed preradiation versus postradiation human tissue from a cohort of 24 patients with localized PCa that received HDRBT as primary treatment (RadBank cohort). We performed Nanostring immune gene expression profiling, digital spatial profiling, and high-throughput immune cell multiplex immunohistochemistry analysis. We also resolved tumor and nontumor zones in spatial and bioinformatic analyses to explore the immunological response. RESULTS: Nanostring immune profiling revealed numerous immune checkpoint molecules (eg, B7-H3, CTLA4, PDL1, and PDL2) and TGFß levels were increased in response to HDRBT. We used a published 16-gene tumor inflammation signature (TIS) to divide tumors into distinct immune activation states (high:hot, intermediate and low:cold) and showed that most localized PCa are cold tumors pre-HDRBT. Crucially, HDRBT converted 80% of these 'cold'-phenotype tumors into an 'intermediate' or 'hot' class. We used digital spatial profiling to show these HDRBT-induced changes in prostate TIS scores were derived from the nontumor regions. Furthermore, these changes in TIS were also associated with pervasive changes in immune cell density and spatial relationships-in particular, between T cell subsets and antigen presenting cells. We identified an increased density of CD4+ FOXP3+ T cells, CD68+ macrophages and CD68+ CD11c+ dendritic cells in response to HDRBT. The only subset change specific to tumor zones was PDL1- macrophages. While these immune responses were heterogeneous, HDRBT induced significant changes in immune cell associations, including a gained T cell and HMWCK+ PDL1+ interaction in tumor zones. CONCLUSION: In conclusion, we showed HDRBT converted "cold" prostate tumors into more immunologically activated "hot" tissues, with accompanying spatially organized immune infiltrates and signaling changes. Understanding and potentially harnessing these changes will have widespread implications for the future treatment of localized PCa, including rational use of combination radio-immunotherapy.


Subject(s)
Biomarkers/analysis , Brachytherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/radiotherapy , T-Lymphocytes/immunology , Tumor Microenvironment/immunology , Aged , Humans , Lymphocytes, Tumor-Infiltrating/radiation effects , Male , Middle Aged , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , T-Lymphocytes/radiation effects , Tumor Microenvironment/radiation effects
16.
Cancers (Basel) ; 12(6)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545367

ABSTRACT

Lung cancer poses the greatest cancer-related death risk and males have poorer outcomes than females, for unknown reasons. Patient sex is not a biological variable considered in lung cancer standard of care. Correlating patient genetics with outcomes is predicted to open avenues for improved management. Using a bioinformatics approach across non-small cell lung cancer (NSCLC) subtypes, we identified where patient sex, mutation of the major tumor suppressor gene, Tumour protein P53 (TP53), and immune signatures stratified outcomes in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), among datasets of The Cancer Genome Atlas (TCGA). We exposed sex and TP53 gene mutations as prognostic for LUAD survival. Longest survival in LUAD occurred among females with wild-type (wt) TP53 genes, high levels of immune infiltration and enrichment for pathway signatures of Interferon Gamma (INF-γ), Tumour Necrosis Factor (TNF) and macrophages-monocytes. In contrast, poor survival in men with LUAD and wt TP53 genes corresponded with enrichment of Transforming Growth Factor Beta 1 (TGFB1, hereafter TGF-ß) and wound healing signatures. In LUAD with wt TP53 genes, elevated gene expression of immune checkpoint CD274 (hereafter: PD-L1) and also protein 53 (p53) negative-regulators of the Mouse Double Minute (MDM)-family predict novel avenues for combined immunotherapies. LUSC is dominated by male smokers with TP53 gene mutations, while a minor population of TCGA LC patients with wt TP53 genes unexpectedly had the poorest survival, suggestive of a separate etiology. We conclude that advanced approaches to LUAD and LUSC therapy lie in the consideration of patient sex, TP53 gene mutation status and immune signatures.

17.
J Invest Dermatol ; 140(4): 869-877.e16, 2020 04.
Article in English | MEDLINE | ID: mdl-31580843

ABSTRACT

Lentigo maligna (LM) is a common subtype of in situ melanoma on chronically sun-exposed skin, particularly the head and neck of older patients. Although surgery is the standard treatment, there is associated morbidity, and options such as imiquimod cream or radiotherapy may be used if surgery is refused or inappropriate. Complete response rates following imiquimod treatment are variable in the literature. The aim of this study was to evaluate the host immune response both before and following treatment with imiquimod to better identify likely responders. Paired pre- and post-imiquimod treatment specimens were available for 27 patients. Patients were treated with imiquimod 5 days per week for 12 weeks; at 16 weeks, lesions were excised for histological assessment. Of the 27 patients, 16 were responders and 11 failed to clear the disease. PDL1 protein expression was increased, accompanied by a unique gene signature in lesions from patients that subsequently histologically cleared LM by 16 weeks. This comprised 57 upregulated immune genes in signaling networks for antigen presentation, type I interferon signaling, and T-cell activation. This may represent an early responder group to imiquimod, and this unique gene signature potentially can be used as a biomarker of LM response to imiquimod.


Subject(s)
B7-H1 Antigen/genetics , Gene Expression Regulation, Neoplastic , Hutchinson's Melanotic Freckle/drug therapy , Imiquimod/administration & dosage , Immunity, Cellular/drug effects , Skin Neoplasms/drug therapy , Adjuvants, Immunologic/administration & dosage , Administration, Topical , B7-H1 Antigen/biosynthesis , Biopsy , DNA, Neoplasm/genetics , Humans , Hutchinson's Melanotic Freckle/genetics , Hutchinson's Melanotic Freckle/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism
19.
Trends Cancer ; 5(12): 761-762, 2019 12.
Article in English | MEDLINE | ID: mdl-31813452

ABSTRACT

Cancer cells devouring their neighbours to survive drug treatment is an abhorrent concept. Yet it holds hope for exploring new anticancer treatments. Tonnessen-Murray et al. adopted elegant cell-labelling methods using real-time microscopy to observe 'cellular gorging' by drug-treated cells. They discovered that in response to drug treatment, cells that became 'cannibals' were able to outlive their unindulged neighbours.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Cannibalism , Humans , Hyperphagia
20.
Clin Transl Immunology ; 8(11): e1094, 2019.
Article in English | MEDLINE | ID: mdl-31768254

ABSTRACT

OBJECTIVES: Investigation of variable response rates to cancer immunotherapies has exposed the immunosuppressive tumor microenvironment (TME) as a limiting factor of therapeutic efficacy. A determinant of TME composition is the tumor location, and clinical data have revealed associations between certain metastatic sites and reduced responses. Preclinical models to study tissue-specific TMEs have eliminated genetic heterogeneity, but have investigated models with limited clinical relevance. METHODS: We investigated the TMEs of tumors at clinically relevant sites of metastasis (liver and lungs) and their impact on αPD-1/αCTLA4 and trimAb (αDR5, α4-1BB, αCD40) therapy responses in the 67NR mouse breast cancer and Renca mouse kidney cancer models. RESULTS: Tumors grown in the lungs were resistant to both therapies whereas the same tumor lines growing in the mammary fat pad (MFP), liver or subcutaneously could be completely eradicated, despite greater tumor burden. Assessment of tumor cells and drug delivery in 67NR lung or MFP tumors revealed no differences and prompted investigation into the immune TME. Lung tumors had a more immunosuppressive TME with increased myeloid-derived suppressor cell infiltration, decreased T cell infiltration and activation, and decreased NK cell activation. Depletion of various immune cell subsets indicated an equivalent role for NK cells and CD8+ T cells in lung tumour control. Thus, targeting T cells with αPD-1/αCTLA4 or trimAb was not sufficient to elicit a robust antitumor response in lung tumors. CONCLUSION: Taken together, these data demonstrate that tissue-specific TMEs influence immunotherapy responses and highlight the importance in defining tissue-specific response patterns in patients.

SELECTION OF CITATIONS
SEARCH DETAIL