Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Biomedicines ; 12(8)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39200368

ABSTRACT

Overexpression and aberrant activation of signal transducer and activator of transcription 3 (STAT3) contribute to tumorigenesis, drug resistance, and tumor-immune evasion, making it a potential cancer therapeutic target. BP1003 is a neutral liposome incorporated with a nuclease-resistant P-ethoxy antisense oligodeoxynucleotide (ASO) targeting the STAT3 mRNA. Its unique design enhances BP1003 stability, cellular uptake, and target affinity. BP1003 efficiently reduces STAT3 expression and enhances the sensitivity of breast cancer cells (HER2+, triple negative) and ovarian cancer cells (late stage, invasive ovarian cancer) to paclitaxel and 5-fluorouracil (5-FU) in both 2D and 3D cell cultures. Similarly, ex vivo and in vivo patient-derived models of pancreatic ductal adenocarcinoma (PDAC) show reduced tissue viability and tumor volume with BP1003 and gemcitabine combination treatments. In addition to directly affecting tumor cells, BP1003 can modulate the tumor microenvironment. Unlike M1 differentiation, monocyte differentiation into anti-inflammatory M2 macrophages is suppressed by BP1003, indicating its potential contribution to immunotherapy. The broad anti-tumor effect of BP1003 in numerous preclinical solid tumor models, such as breast, ovarian, and pancreatic cancer models shown in this work, makes it a promising cancer therapeutic.

2.
Cancer Biol Ther ; 25(1): 2364433, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38926911

ABSTRACT

Prostate cancer has heterogeneous growth patterns, and its prognosis is the poorest when it progresses to a neuroendocrine phenotype. Using bioinformatic analysis, we evaluated RNA expression of neuroendocrine genes in a panel of five different cancer types: prostate adenocarcinoma, breast cancer, kidney chromophobe, kidney renal clear cell carcinoma and kidney renal papillary cell carcinoma. Our results show that specific neuroendocrine genes are significantly dysregulated in these tumors, suggesting that they play an active role in cancer progression. Among others, synaptophysin (SYP), a conventional neuroendocrine marker, is upregulated in prostate adenocarcinoma (PRAD) and breast cancer (BRCA). Our analysis shows that SYP is enriched in small extracellular vesicles (sEVs) derived from plasma of PRAD patients, but it is absent in sEVs derived from plasma of healthy donors. Similarly, classical sEV markers are enriched in sEVs derived from plasma of prostate cancer patients, but weakly detectable in sEVs derived from plasma of healthy donors. Overall, our results pave the way to explore new strategies to diagnose these diseases based on the neuroendocrine gene expression in patient tumors or plasma sEVs.


Subject(s)
Adenocarcinoma , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Synaptophysin/metabolism , Synaptophysin/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Gene Expression Profiling/methods
3.
J Immunol ; 206(7): 1483-1492, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33685995

ABSTRACT

Patients with grade III anaplastic astrocytomas (AA) separate into survival cohorts based on the presence or absence of mutations in isocitrate dehydrogenase (IDH). Progression to glioblastoma (GBM), morphologically distinguishable by elevated microvascular proliferation, necrosis, and cell division in tumor tissues, is considerably more rapid in IDH wild-type tumors such that their diagnosis as AA is relatively rare. More often initially presenting as GBM, these contain higher numbers of tumor-associated macrophages (TAMs) than most AA, and GBM patients also have higher levels of circulating M2 monocytes. TAM and M2 monocytes share functional properties inhibitory for antitumor immunity. Yet, although there is a wealth of data implicating TAM in tumor-immune evasion, there has been limited analysis of the impact of the circulating M2 monocytes. In the current study, immune parameters in sera, circulating cells, and tumor tissues from patients with primary gliomas morphologically diagnosed as AA were assessed. Profound differences in serum cytokines, glioma extracellular vesicle cross-reactive Abs, and gene expression by circulating cells identified two distinct patient cohorts. Evidence of type 2-immune bias was most often seen in patients with IDH wild-type AA, whereas a type 1 bias was common in patients with tumors expressing the IDH1R132H mutation. Nevertheless, a patient's immune profile was better correlated with the extent of tumor vascular enhancement on magnetic resonance imaging than IDH mutational status. Regardless of IDH genotype, AA progression appears to be associated with a switch in systemic immune bias from type 1 to type 2 and the loss of tumor vasculature integrity.


Subject(s)
Astrocytoma/immunology , Glioblastoma/immunology , Tumor-Associated Macrophages/immunology , Adult , Cancer Survivors , Carcinogenesis , Cohort Studies , Cytokines/metabolism , Female , Humans , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Mutation/genetics , Th1 Cells/immunology , Th1-Th2 Balance , Th2 Cells/immunology
4.
Clin Cancer Res ; 27(7): 1912-1922, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33500356

ABSTRACT

PURPOSE: Despite standard of care (SOC) established by Stupp, glioblastoma remains a uniformly poor prognosis. We evaluated IGV-001, which combines autologous glioblastoma tumor cells and an antisense oligonucleotide against IGF type 1 receptor (IMV-001), in newly diagnosed glioblastoma. PATIENTS AND METHODS: This open-label protocol was approved by the Institutional Review Board at Thomas Jefferson University. Tumor cells collected during resection were treated ex vivo with IMV-001, encapsulated in biodiffusion chambers with additional IMV-001, irradiated, then implanted in abdominal acceptor sites. Patients were randomized to four exposure levels, and SOC was initiated 4-6 weeks later. On the basis of clinical improvements, randomization was halted after patient 23, and subsequent patients received only the highest exposure. Safety and tumor progression were primary and secondary objectives, respectively. Time-to-event outcomes were compared with the SOC arms of published studies. RESULTS: Thirty-three patients were enrolled, and median follow-up was 3.1 years. Six patients had adverse events (grade ≤3) possibly related to IGV-001. Median progression-free survival (PFS) was 9.8 months in the intent-to-treat population (vs. SOC, 6.5 months; P = 0.0003). In IGV-001-treated patients who met Stupp-eligible criteria, PFS was 11.6 months overall (n = 22; P = 0.001) and 17.1 months at the highest exposure (n = 10; P = 0.0025). The greatest overall survival was observed in Stupp-eligible patients receiving the highest exposure (median, 38.2 months; P = 0.044). Stupp-eligible patients with methylated O6-methylguanine-DNA methyltransferase promoter (n = 10) demonstrated median PFS of 38.4 months (P = 0.0008). Evidence of immune activation was noted. CONCLUSIONS: IGV-001 was well tolerated, PFS compared favorably with SOC, and evidence suggested an immune-mediated mechanism (ClinicalTrials.gov: NCT02507583).


Subject(s)
Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Oligodeoxyribonucleotides, Antisense/therapeutic use , Receptor, IGF Type 1/antagonists & inhibitors , Adult , Aged , Brain Neoplasms/immunology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Female , Glioblastoma/immunology , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Male , Middle Aged , Oligodeoxyribonucleotides, Antisense/adverse effects , Receptor, IGF Type 1/genetics
5.
Future Virol ; 15(11): 755-761, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33343683

ABSTRACT

Immune memory cells residing in previously infected, nonlymphoid tissues play a role in immune surveillance. In the event that circulating antibodies fail to prevent virus spread to the tissues in a secondary infection, these memory cells provide an essential defense against tissue reinfection. CNS tissues are isolated from circulating immune cells and antibodies by the blood-brain barrier, making the presence of tissue-resident immune memory cells particularly needed to combat recurrent infection by neurotropic viruses. Wild-type and laboratory-engineered rabies viruses are neurotropic, differ in pathogenicity, and have varying effects on BBB functions. These viruses have proven invaluable tools in demonstrating the importance of tissue-resident immune memory cells in the reinfection of CNS tissues. Only Type 1 immune memory is effective at therapeutically clearing a secondary infection with wild-type rabies viruses from the CNS and does so despite the maintenance of blood-brain barrier integrity.

6.
Am J Clin Oncol ; 43(2): 82-86, 2020 02.
Article in English | MEDLINE | ID: mdl-31693508

ABSTRACT

OBJECTIVES: There is no study published regarding the benefit of radiation therapy (RT) in combination with immune checkpoint inhibitors (ICIs) for the treatment of metastatic renal cell cancer (mRCC). This report is part of an exploratory study aiming to determine the immunomodulatory activity of RT alone or in combination with pembrolizumab in solid tumors. MATERIALS AND METHODS: mRCC patients were treated with a combination of RT (8 Gy×1 or 4 Gy×5) followed by pembrolizumab with or without lead-in dose of pembrolizumab. Treatment response was measured based on the modified Response Evaluation Criteria in Solid Tumors criteria. Adverse events were monitored and graded. Pre-RT and post-RT tumor biopsies were obtained to evaluate programmed death-ligand 1 expression. Immune markers from peripheral blood before, during, and after treatment were analyzed using flow cytometry. RESULTS: Twelve mRCC patients who progressed on prior antiangiogenic therapy were enrolled. Half had 2 lines of prior therapy. Two patients (16.7%) had partial responses and were on study for 12.4 and 14.5 months. Three patients had stable disease for a period ranging from 4.2 to 10.4 months, whereas 7 patients had progressive disease. Median progression-free survival was 8.6 months and median overall survival was 32.3 months. Three patients had grade ≥3 events (hyperglycemia, thrombocytopenia, transaminitis). Biopsied tissue programmed death-ligand 1 expression and tumor-infiltrating lymphocytes were numerically higher in responders comparing to nonresponders (Modified Proportion Score 45% vs. 30.45%; tumor-infiltrating lymphocytes odds ratio 4.92). CONCLUSION: Combining RT with pembrolizumab in pretreated mRCC is well-tolerated and appears to have comparable efficacy with single-agent nivolumab.


Subject(s)
Adrenal Gland Neoplasms/therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Renal Cell/therapy , Chemoradiotherapy/methods , Kidney Neoplasms/pathology , Liver Neoplasms/therapy , Adrenal Gland Neoplasms/secondary , Adult , Aged , Aged, 80 and over , Alanine Transaminase , Angiogenesis Inhibitors/therapeutic use , Aspartate Aminotransferases , Carcinoma, Renal Cell/secondary , Female , Humans , Hyperglycemia/chemically induced , Liver Neoplasms/secondary , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Male , Middle Aged , Pilot Projects , Progression-Free Survival , Soft Tissue Neoplasms/secondary , Soft Tissue Neoplasms/therapy , Thrombocytopenia/chemically induced , Treatment Failure , Treatment Outcome
7.
Mol Imaging Biol ; 22(2): 293-302, 2020 04.
Article in English | MEDLINE | ID: mdl-31292914

ABSTRACT

PURPOSE: Scintigraphic imaging of malignant glioblastoma (MG) continues to be challenging. We hypothesized that VPAC1 cell surface receptors can be targeted for positron emission tomography (PET) imaging of orthotopically implanted MG in a mouse model, using a VPAC1-specific peptide [64Cu]TP3805. PROCEDURES: The expression of VPAC1 in mouse GL261 and human U87 glioma cell lines was determined by western blot. The ability of [64Cu]TP3805 to bind to GL261 and U87 cells was studied by cell-binding. Receptor-blocking studies were performed to validate receptor specificity. GL261 tumors were implanted orthotopically in syngeneic T-bet knockout C57BL/6 mouse brain (N = 15) and allowed to grow for 2-3 weeks. Mice were injected i.v., first with ~ 150 µCi of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) then 24 h later with ~ 200 µCi of [64Cu]TP3805. In another set of tumor-bearing mice, (N = 5), ionic [64Cu]Cl2 was injected as a control. Mice were imaged at a 2-h post-injection using an Inveon micro-PET/CT, sacrificed and % ID/g of [64Cu]TP3805 and [64Cu]Cl2 were calculated in a tumor, normal brain, and other tissues. For histologic tissue examination, 3-µm thick sections of the tumors and normal brain were prepared, digital autoradiography (DAR) was performed, and then the sections were H&E stained for histologic examination. RESULTS: Western blots showed a strong signal for VPAC1 on both cell lines. [64Cu]TP3805 cell-binding was 87 ± 1.5 %. Receptor-blocking reduced cell-binding to 24.3 ± 1.5 % (P < 0.01). PET imaging revealed remarkable accumulation of [64Cu]TP3805 in GL261 MG with a negligible background in the normal brain, as compared to [18F]FDG. Micro-PET/CT image analyses and tissue distribution showed that the brain tumor uptake for [64Cu]TP3805 was 8.2 ± 1.7 % ID/g and for [64Cu]Cl2 2.1 ± 0.5 % ID/g as compared to 1.0 ± 0.3 % ID/g and 1.4 ± 0.3 % ID/g for normal mouse brains, respectively. The high tumor/normal brain ratio for [64Cu]TP3805 (8.1 ± 1.1) allowed tumors to be visualized unequivocally. Histology and [64Cu]TP3805 DAR differentiated malignant tumors from healthy brain and confirmed PET findings. CONCLUSION: Targeting VPAC1 receptors using [64Cu]TP3805 for PET imaging of MG is a promising novel approach and calls for further investigation.


Subject(s)
Copper Radioisotopes/pharmacology , Glioblastoma/diagnostic imaging , Positron Emission Tomography Computed Tomography , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Animals , Brain/diagnostic imaging , Brain/metabolism , Brain Neoplasms/diagnostic imaging , Cell Line, Tumor , Fluorodeoxyglucose F18 , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Transplantation , Peptides/chemistry , Radiopharmaceuticals , Tissue Distribution
8.
J Neurovirol ; 24(5): 606-615, 2018 10.
Article in English | MEDLINE | ID: mdl-29987584

ABSTRACT

Rabies virus is a neurotropic lyssavirus which is 100% fatal in its pathogenic form when reaching unprotected CNS tissues. Death can be prevented by mechanisms delivering appropriate immune effectors across the blood-brain barrier which normally remains intact during pathogenic rabies virus infection. One therapeutic approach is to superinfect CNS tissues with attenuated rabies virus which induces blood-brain barrier permeability and immune cell entry. Current thinking is that peripheral rabies immunization is sufficient to protect against a challenge with pathogenic rabies virus. While this is undoubtedly the case if the virus is confined to the periphery, what happens if the virus reaches the CNS is less well-understood. In the current study, we find that peripheral immunization does not fully protect mice long-term against an intranasal challenge with pathogenic rabies virus. Protection is significantly better in mice that have cleared attenuated virus from the CNS and is associated with a more robust CNS recall response evidently due to the presence in CNS tissues of elevated numbers of lymphocytes phenotypically resembling long-term resident immune cells. Adoptive transfer of cells from rabies-immune mice fails to protect against CNS challenge with pathogenic rabies virus further supporting the concept that long-term resident immune cell populations must be established in brain tissues to protect against a subsequent CNS challenge with pathogenic rabies virus.


Subject(s)
Brain/virology , Rabies Vaccines/immunology , Rabies/immunology , Animals , Mice , Mice, Inbred C57BL , Rabies virus , Vaccines, Attenuated/immunology
9.
Matrix Biol ; 70: 20-35, 2018 09.
Article in English | MEDLINE | ID: mdl-29530483

ABSTRACT

Therapeutic approaches aimed at curing prostate cancer are only partially successful given the occurrence of highly metastatic resistant phenotypes that frequently develop in response to therapies. Recently, we have described αvß6, a surface receptor of the integrin family as a novel therapeutic target for prostate cancer; this epithelial-specific molecule is an ideal target since, unlike other integrins, it is found in different types of cancer but not in normal tissues. We describe a novel αvß6-mediated signaling pathway that has profound effects on the microenvironment. We show that αvß6 is transferred from cancer cells to monocytes, including ß6-null monocytes, by exosomes and that monocytes from prostate cancer patients, but not from healthy volunteers, express αvß6. Cancer cell exosomes, purified via density gradients, promote M2 polarization, whereas αvß6 down-regulation in exosomes inhibits M2 polarization in recipient monocytes. Also, as evaluated by our proteomic analysis, αvß6 down-regulation causes a significant increase in donor cancer cells, and their exosomes, of two molecules that have a tumor suppressive role, STAT1 and MX1/2. Finally, using the Ptenpc-/- prostate cancer mouse model, which carries a prostate epithelial-specific Pten deletion, we demonstrate that αvß6 inhibition in vivo causes up-regulation of STAT1 in cancer cells. Our results provide evidence of a novel mechanism that regulates M2 polarization and prostate cancer progression through transfer of αvß6 from cancer cells to monocytes through exosomes.


Subject(s)
Adenocarcinoma/genetics , Antigens, Neoplasm/genetics , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Integrins/genetics , Prostatic Neoplasms/genetics , STAT1 Transcription Factor/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Animals , Antibodies, Monoclonal/pharmacology , Antigens, Neoplasm/immunology , Antineoplastic Agents, Immunological/pharmacology , Cell Communication , Cell Differentiation , Coculture Techniques , Exosomes/pathology , Humans , Integrins/antagonists & inhibitors , Integrins/immunology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Male , Mice , Mice, Knockout , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/immunology , PC-3 Cells , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/immunology , Primary Cell Culture , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , STAT1 Transcription Factor/immunology , Signal Transduction , THP-1 Cells , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
10.
Trop Med Infect Dis ; 2(3)2017 Jul 04.
Article in English | MEDLINE | ID: mdl-30270881

ABSTRACT

Rabies remains a major public health issue worldwide, especially in developing countries where access to medical care can represent a real challenge. While there is still no cure for rabies, it is a vaccine-preventable disease with pre- and post-exposure prophylaxis regimens approved by the World Health Organization (WHO). However, many rabies-exposed individuals have limited access to vaccines and virus-neutralizing antibodies approved for post-exposure prophylaxis. Unfortunately, any delay in the administration of these reagents can have lethal consequences. This highlights the need to develop cost-effective immunological reagents with a greater window of efficacy. Live-attenuated vaccine strains of rabies virus presents a potential treatment in filling this gap. We show here that immunization with live-attenuated vaccines provide long-lasting rabies immunity, superior to the protection induced by inactivated vaccines. In the absence of an immunostimulatory adjuvant, vaccination with multiple doses of inactivated rabies virus induces a type-2 immune response. This type of immunity is highly effective at inducing neutralizing antibody but has limited efficacy in clearing the virus from central nervous system (CNS) tissues. In contrast, a single infection with live-attenuated rabies vaccine safely drives a type-1 immune response, associated with both the production of a neutralizing antibody and the clearance of wild-type rabies virus from CNS tissues. These results indicate that live-attenuated rabies strains have the potential to be more effective in post-exposure prophylaxis than conventional inactivated vaccines.

11.
J Immunol ; 195(9): 4358-68, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26408670

ABSTRACT

Much of our understanding of CNS immunity has been gained from models involving pathological inflammation. Attenuated rabies viruses (RABV) are unique tools to study CNS immunity in the absence of conventional inflammatory mechanisms, as they spread from the site of inoculation to the CNS transaxonally, thereby bypassing the blood-brain barrier (BBB), and are cleared without neutrophil or monocyte infiltration. To better understand the role of CD4 T cell subsets in the clearance of the virus from CNS tissues, we examined the development of antiviral immunity in wild-type (WT) and T-bet knockout mice (T-bet(-/-)), which lack Th1 cells. Early control of RABV replication in the CNS tissues of WT mice is associated with the production of IFN-γ, with antiviral effects likely mediated through the enhanced expression of type I IFNs. Of interest, IFN-α and -γ are overexpressed in the infected T-bet(-/-) by comparison with WT CNS tissues, and the initial control of RABV infection is similar. Ultimately, attenuated RABV are cleared from the CNS tissues of WT mice by Ab locally produced by the activities of infiltrating T and B cells. Although T and B cell infiltration into the CNS of infected T-bet(-/-) mice is comparable, their activities are not, the consequence being delayed, low-level Ab production and prolonged RABV replication. More importantly, neither T-bet(-/-) mice immunized with an attenuated virus, nor WT mice with Th2 RABV-specific immunity induced by immunization with inactivated virus, are protected in the long term against challenge with a pathogenic RABV.


Subject(s)
Central Nervous System/immunology , Rabies virus/immunology , Rabies/immunology , T-Box Domain Proteins/immunology , Animals , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/virology , Central Nervous System/metabolism , Central Nervous System/virology , Flow Cytometry , Gene Expression/immunology , Interferon-alpha/genetics , Interferon-alpha/immunology , Interferon-alpha/metabolism , Interferon-beta/genetics , Interferon-beta/immunology , Interferon-beta/metabolism , Interferon-gamma/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Rabies/metabolism , Rabies/virology , Rabies Vaccines/immunology , Rabies Vaccines/metabolism , Rabies virus/metabolism , Rabies virus/physiology , Reverse Transcriptase Polymerase Chain Reaction , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Th1 Cells/immunology , Th1 Cells/metabolism , Th1 Cells/virology , Th2 Cells/immunology , Th2 Cells/metabolism , Th2 Cells/virology , Time Factors , Vaccines, Attenuated/immunology , Vaccines, Attenuated/metabolism
12.
J Virol ; 87(3): 1834-41, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23192867

ABSTRACT

A single intramuscular application of the live but not UV-inactivated recombinant rabies virus (RABV) variant TriGAS in mice induces the robust and sustained production of RABV-neutralizing antibodies that correlate with long-term protection against challenge with an otherwise lethal dose of the wild-type RABV. To obtain insight into the mechanism by which live TriGAS induces long-lasting protective immunity, quantitative PCR (qPCR) analysis of muscle tissue, draining lymph nodes, spleen, spinal cord, and brain at different times after TriGAS inoculation revealed the presence of significant copy numbers of RABV-specific RNA in muscle, lymph node, and to a lesser extent, spleen for several days postinfection. Notably, no significant amounts of RABV RNA were detected in brain or spinal cord at any time after TriGAS inoculation. Differential qPCR analysis revealed that the RABV-specific RNA detected in muscle is predominantly genomic RNA, whereas RABV RNA detected in draining lymph nodes is predominantly mRNA. Comparison of genomic RNA and mRNA obtained from isolated lymph node cells showed the highest mRNA-to-genomic-RNA ratios in B cells and dendritic cells (DCs), suggesting that these cells represent the major cell population that is infected in the lymph node. Since RABV RNA declined to undetectable levels by 14 days postinoculation of TriGAS, we speculate that a transient infection of DCs with TriGAS may be highly immunostimulatory through mechanisms that enhance antigen presentation. Our results support the superior efficacy and safety of TriGAS and advocate for its utility as a vaccine.


Subject(s)
Lymph Nodes/virology , Rabies Vaccines/immunology , Rabies virus/immunology , Rabies/prevention & control , Animals , B-Lymphocytes/virology , Brain/pathology , Brain/virology , Dendritic Cells/virology , Female , Injections, Intramuscular , Lymph Nodes/immunology , Lymph Nodes/pathology , Mice , Muscles/pathology , Muscles/virology , RNA, Viral/analysis , RNA, Viral/genetics , Rabies/virology , Rabies Vaccines/administration & dosage , Rabies virus/pathogenicity , Real-Time Polymerase Chain Reaction , Spinal Cord/pathology , Spinal Cord/virology , Spleen/pathology , Spleen/virology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
13.
Future Virol ; 6(3): 387-397, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21686076

ABSTRACT

The long-held concept that rabies infection is lethal in humans once the causative rabies virus has reached the CNS has been called into question by the recent survival of a number of patients with clinical rabies. Studies in animal models provide insight into why survival from a rabies virus infection that has spread to the CNS is possible and the immune mechanisms involved. In the CNS, both innate mechanisms capable of inhibiting virus replication and the activity of infiltrating rabies virus-specific T and B cells with the capacity to clear the virus are required. Deficiencies in the induction of either aspect of rabies immunity can lead to lethal consequences but may be overcome by novel approaches to active and passive immunization.

14.
Adv Virus Res ; 79: 55-71, 2011.
Article in English | MEDLINE | ID: mdl-21601042

ABSTRACT

Rabies, a neurological disease associated with replication in central nervous system (CNS) tissues of any of a number of rabies viruses endemic in nature, is generally fatal. Prophylactic medical intervention is immune mediated and directed at preventing the spread of the virus from a peripheral site of exposure to the CNS. While individuals rarely develop immune responses capable of clearing the virus from CNS tissues, a variety of laboratory-attenuated rabies viruses are readily cleared from the CNS tissues in animal models. By comparing immune responses to wild-type and attenuated rabies viruses in these models, we have discovered that the latter induce processes required for immune effector infiltration into CNS tissues that are absent from lethal infections. Predominant among these are activities of cells of the neurovascular unit (NVU) that promote an interaction with circulating immune cells. In the absence of this interaction, the specialized barrier function of the NVU remains intact and circulating virus-specific immune effectors are largely excluded from infected CNS tissues. Studies of mixed infections with wild-type and attenuated rabies viruses reveal that wild-type rabies viruses fail to trigger, rather than inhibit, the interactions between immune cells and the NVU required for virus clearance from the CNS. These studies provide insights into how immune effectors with the capacity to clear the virus may be delivered into CNS tissues to contain a wild-type rabies virus infection. However, to apply immunotherapeutic strategies beyond the initial stages of CNS infection, further insights into the fate of the infected cells during virus clearance are needed.


Subject(s)
Central Nervous System/immunology , Central Nervous System/virology , Immune Evasion , Rabies virus/immunology , Rabies virus/pathogenicity , Animals , Disease Models, Animal , Dogs , Humans , Immunity, Cellular , Immunity, Humoral , Virulence
15.
Proc Natl Acad Sci U S A ; 106(27): 11300-5, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19581599

ABSTRACT

Rabies remains an important public health problem with more than 95% of all human rabies cases caused by exposure to rabid dogs in areas where effective, inexpensive vaccines are unavailable. Because of their ability to induce strong innate and adaptive immune responses capable of clearing the infection from the CNS after a single immunization, live-attenuated rabies virus (RV) vaccines could be particularly useful not only for the global eradication of canine rabies but also for late-stage rabies postexposure prophylaxis of humans. To overcome concerns regarding the safety of live-attenuated RV vaccines, we developed the highly attenuated triple RV G variant, SPBAANGAS-GAS-GAS. In contrast to most attenuated recombinant RVs generated thus far, SPBAANGAS-GAS-GAS is completely nonpathogenic after intracranial infection of mice that are either developmentally immunocompromised (e.g., 5-day-old mice) or have inherited deficits in immune function (e.g., antibody production or type I IFN signaling), as well as normal adult animals. In addition, SPBAANGAS-GAS-GAS induces immune mechanisms capable of containing a CNS infection with pathogenic RV, thereby preventing lethal rabies encephalopathy. The lack of pathogenicity together with excellent immunogenicity and the capacity to deliver immune effectors to CNS tissues makes SPBAANGAS-GAS-GAS a promising vaccine candidate for both the preexposure and postexposure prophylaxis of rabies.


Subject(s)
Rabies Vaccines/administration & dosage , Rabies Vaccines/immunology , Rabies virus/immunology , Rabies/immunology , Rabies/prevention & control , Aging/immunology , Animals , Animals, Suckling , Blood-Brain Barrier/immunology , Blood-Brain Barrier/virology , Immunocompromised Host , Mice , Permeability , Rabies virus/pathogenicity , Survival Analysis , Treatment Outcome , Vaccination , Vaccines, Attenuated
16.
Proc Natl Acad Sci U S A ; 105(40): 15511-6, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18829442

ABSTRACT

CNS tissues are protected from circulating cells and factors by the blood-brain barrier (BBB), a specialization of the neurovasculature. Outcomes of the loss of BBB integrity and cell infiltration into CNS tissues can differ vastly. For example, elevated BBB permeability is closely associated with the development of neurological disease in experimental allergic encephalomyelitis (EAE) but not during clearance of the attenuated rabies virus CVS-F3 from the CNS tissues. To probe whether differences in the nature of BBB permeability changes may contribute to the pathogenesis of acute neuroinflammatory disease, we compared the characteristics of BBB permeability changes in mice with EAE and in mice clearing CVS-F3. BBB permeability changes are largely restricted to the cerebellum and spinal cord in both models but differ in the extent of leakage of markers of different size and in the nature of cell accumulation in the CNS tissues. The accumulation in the CNS tissues of CD4 T cells expressing mRNAs specific for IFN-gamma and IL-17 is common to both, but iNOS-positive cells invade into the CNS parenchyma only in EAE. Mice that have been immunized with myelin basic protein (MBP) and infected exhibit the features of EAE. Treatment with the peroxynitrite-dependent radical scavenger urate inhibits the invasion of iNOS-positive cells into the CNS tissues and the development of clinical signs of EAE without preventing the loss of BBB integrity in immunized/infected animals. These findings indicate that BBB permeability changes can occur in the absence of neuropathology provided that cell invasion is restricted.


Subject(s)
Autoimmunity , Blood-Brain Barrier/immunology , Blood-Brain Barrier/virology , Central Nervous System/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Rabies/immunology , Animals , Blood-Brain Barrier/pathology , Cell Movement , Cerebellum/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Free Radical Scavengers/metabolism , Immunohistochemistry , Interferon-gamma/immunology , Interleukin-17/immunology , Mice , Mice, Inbred Strains , Nitric Oxide Synthase/metabolism , Peroxynitrous Acid/metabolism , Peroxynitrous Acid/therapeutic use , Rabies/metabolism , Rabies virus/immunology , Rabies virus/metabolism
17.
J Neuroimmunol ; 196(1-2): 8-15, 2008 May 30.
Article in English | MEDLINE | ID: mdl-18406473

ABSTRACT

The blood-brain barrier (BBB) is dramatically but transiently compromised in the cerebella of myelin basic protein immunized mice at least 1 week prior to the development of the paralytic phase of experimental allergic encephalomyelitis (EAE). Treatment of mice with the peroxynitrite-dependent radical scavenger uric acid (UA) during the first week after immunization blocks the early increase in cerebellar BBB permeability and the subsequent development of clinical signs of EAE. These results indicate that the early loss of BBB integrity in the cerebellum is likely to be a necessary step in the development of paralytic EAE.


Subject(s)
Blood-Brain Barrier/immunology , Cerebellum/pathology , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Blood-Brain Barrier/drug effects , Capillary Permeability/drug effects , Capillary Permeability/immunology , Cerebellum/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Fluorescein , Gene Expression Regulation/drug effects , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/metabolism , Mice , Myelin Basic Protein/immunology , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Statistics, Nonparametric , Time Factors
18.
J Immunol ; 178(11): 7334-43, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17513784

ABSTRACT

Elevated blood-brain barrier (BBB) permeability is associated with both the protective and pathological invasion of immune and inflammatory cells into CNS tissues. Although a variety of processes have been implicated in the changes at the BBB that result in the loss of integrity, there has been no consensus as to their induction. TNF-alpha has often been proposed to be responsible for increased BBB permeability but there is accumulating evidence that peroxynitrite (ONOO(-))-dependent radicals may be the direct trigger. We demonstrate here that enhanced BBB permeability in mice, whether associated with rabies virus (RV) clearance or CNS autoimmunity, is unaltered in the absence of TNF-alpha. Moreover, the induction of TNF-alpha expression in CNS tissues by RV infection has no impact on BBB integrity in the absence of T cells. CD4 T cells are required to enhance BBB permeability in response to the CNS infection whereas CD8 T cells and B cells are not. Like CNS autoimmunity, elevated BBB permeability in response to RV infection is evidently mediated by ONOO(-). However, as opposed to the invading cells producing ONOO(-) that have been implicated in the pathogenesis of CNS inflammation, during virus clearance ONOO(-) is produced without pathological sequelae by IFN-gamma-stimulated neurovascular endothelial cells.


Subject(s)
Blood-Brain Barrier/immunology , Cell Membrane Permeability/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Peroxynitrous Acid/physiology , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , Cell Membrane Permeability/genetics , Cell Movement/genetics , Cell Movement/immunology , Cerebellum/immunology , Cerebellum/pathology , Cerebellum/virology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Encephalomyelitis, Autoimmune, Experimental/virology , Female , Lymphopenia/immunology , Lymphopenia/pathology , Lymphopenia/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rabies virus/immunology , Signal Transduction/genetics , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , T-Lymphocyte Subsets/virology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/deficiency , Tumor Necrosis Factor-alpha/genetics , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Viral Load
19.
Proc Natl Acad Sci U S A ; 104(13): 5656-61, 2007 Mar 27.
Article in English | MEDLINE | ID: mdl-17372191

ABSTRACT

Experimental allergic encephalomyelitis (EAE) is an inflammatory demyelinating disease of the CNS that is used to model certain parameters of multiple sclerosis. To establish the relative contributions of T cell reactivity, the loss of blood-brain barrier (BBB) integrity, CNS inflammation, and lesion formation toward the pathogenesis of EAE, we assessed the incidence of EAE and these parameters in mice lacking NF-kappaB, TNF-alpha, IFN-alphabeta receptors, IFN-gamma receptors, and inducible nitric oxide synthase. Although increased myelin oligodendrocyte glycoprotein-specific T cell reactivity was generally associated with a more rapid onset or increased disease severity, the loss of BBB integrity and cell accumulation in spinal cord tissues was invariably associated with the development of neurological disease signs. Histological and real-time RT-PCR analyses revealed differences in the nature of immune/inflammatory cell accumulation in the spinal cord tissues of the different mouse strains. On the other hand, disease severity during the acute phase of EAE directly correlated with the extent of BBB permeability. Thus, the loss of BBB integrity seems to be a requisite event in the development of EAE and can occur in the absence of important inflammatory mediators.


Subject(s)
Blood-Brain Barrier , Encephalomyelitis, Autoimmune, Experimental/genetics , Spinal Cord/pathology , Animals , Cell Proliferation , Central Nervous System/metabolism , Central Nervous System/pathology , Disease Models, Animal , Female , Interferon-gamma/metabolism , Male , Mice , Mice, Knockout , Permeability , Sex Factors , Spinal Cord/metabolism , T-Lymphocytes/cytology
20.
J Immunol ; 176(12): 7666-75, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16751414

ABSTRACT

The loss of blood-brain barrier (BBB) integrity in CNS inflammatory responses triggered by infection and autoimmunity has generally been associated with the development of neurological signs. In the present study, we demonstrate that the clearance of the attenuated rabies virus CVS-F3 from the CNS is an exception; increased BBB permeability and CNS inflammation occurs in the absence of neurological sequelae. We speculate that regionalization of the CNS inflammatory response contributes to its lack of pathogenicity. Despite virus replication and the expression of several chemokines and IL-6 in both regions being similar, the up-regulation of MIP-1beta, TNF-alpha, IFN-gamma, and ICAM-1 and the loss of BBB integrity was more extensive in the cerebellum than in the cerebral cortex. The accumulation of CD4- and CD19-positive cells was higher in the cerebellum than the cerebral cortex. Elevated CD19 levels were paralleled by kappa-L chain expression levels. The timing of BBB permeability changes, kappa-L chain expression in CNS tissues, and Ab production in the periphery suggest that the in situ production of virus-neutralizing Ab may be more important in virus clearance than the infiltration of circulating Ab. The data indicate that, with the possible exception of CD8 T cells, the effectors of rabies virus clearance are more commonly targeted to the cerebellum. This is likely the result of differences in the capacity of the tissues of the cerebellum and cerebral cortex to mediate the events required for BBB permeability changes and cell invasion during virus infection.


Subject(s)
Blood-Brain Barrier/immunology , Cell Membrane Permeability/immunology , Cerebellum/pathology , Cerebellum/virology , Cerebral Cortex/pathology , Cerebral Cortex/virology , Rabies virus/immunology , Administration, Intranasal , Animals , Antibodies, Viral/biosynthesis , Cerebellum/physiopathology , Cerebral Cortex/physiopathology , Chemokines/biosynthesis , Female , Inflammation/immunology , Inflammation/physiopathology , Inflammation/virology , Intercellular Adhesion Molecule-1/biosynthesis , Interferon-gamma/biosynthesis , Interleukin-6/biosynthesis , Male , Mice , Mice, Inbred Strains , Rabies/immunology , Rabies/pathology , Rabies/physiopathology , Rabies/virology , Rabies virus/growth & development , Rabies virus/pathogenicity , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL