Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Genet Med ; 25(12): 100947, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37534744

ABSTRACT

PURPOSE: Variants of uncertain significance (VUS) are a common result of diagnostic genetic testing and can be difficult to manage with potential misinterpretation and downstream costs, including time investment by clinicians. We investigated the rate of VUS reported on diagnostic testing via multi-gene panels (MGPs) and exome and genome sequencing (ES/GS) to measure the magnitude of uncertain results and explore ways to reduce their potentially detrimental impact. METHODS: Rates of inconclusive results due to VUS were collected from over 1.5 million sequencing test results from 19 clinical laboratories in North America from 2020 to 2021. RESULTS: We found a lower rate of inconclusive test results due to VUSs from ES/GS (22.5%) compared with MGPs (32.6%; P < .0001). For MGPs, the rate of inconclusive results correlated with panel size. The use of trios reduced inconclusive rates (18.9% vs 27.6%; P < .0001), whereas the use of GS compared with ES had no impact (22.2% vs 22.6%; P = ns). CONCLUSION: The high rate of VUS observed in diagnostic MGP testing warrants examining current variant reporting practices. We propose several approaches to reduce reported VUS rates, while directing clinician resources toward important VUS follow-up.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing , Humans , Genetic Testing/methods , Genomics , Exome/genetics , North America
4.
J Mol Diagn ; 25(7): 524-531, 2023 07.
Article in English | MEDLINE | ID: mdl-37088140

ABSTRACT

Genome sequencing (GS) is a powerful clinical tool used for the comprehensive diagnosis of germline disorders. GS library preparation typically involves mechanical DNA fragmentation, end repair, and bead-based library size selection followed by adapter ligation, which can require a large amount of input genomic DNA. Tagmentation using bead-linked transposomes can simplify the library preparation process and reduce the DNA input requirement. Here we describe the clinical validation of tagmentation-based PCR-free GS as a clinical test for rare germline disorders. Compared with the Genome-in-a-Bottle Consortium benchmark variant sets, GS had a recall >99.7% and a precision of 99.8% for single nucleotide variants and small insertion-deletions. GS also exhibited 100% sensitivity for clinically reported sequence variants and the copy number variants examined. Furthermore, GS detected mitochondrial sequence variants above 5% heteroplasmy and showed reliable detection of disease-relevant repeat expansions and SMN1 homozygous loss. Our results indicate that while lowering DNA input requirements and reducing library preparation time, GS enables uniform coverage across the genome as well as robust detection of various types of genetic alterations. With the advantage of comprehensive profiling of multiple types of genetic alterations, GS is positioned as an ideal first-tier diagnostic test for germline disorders.


Subject(s)
DNA , Rare Diseases , Humans , Base Sequence , Chromosome Mapping , Sequence Analysis, DNA/methods , Gene Library , High-Throughput Nucleotide Sequencing/methods
5.
Am J Ophthalmol Case Rep ; 29: 101745, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36636630

ABSTRACT

Purpose: To describe a case of Alström syndrome arising from maternal uniparental disomy. Observations: A 13-month-old boy with poor vision and nystagmus was diagnosed with Alström syndrome based on genetic testing that identified a homozygous pathogenic variant, ALMS1 c.2141_2141del (p.Ser714Tyrfs*6), that was only found in his mother and not his father. In contrast to the usual autosomal recessive inheritance pattern in which a child inherits a variant from each parent, multi-step genetic testing of the child and both parents confirmed uniparental disomy as the mechanism of inheritance. Conclusions and Importance: Confirmation of uniparental disomy in autosomal recessive disorders allows for parental assurance that future offspring will be unaffected.

6.
NPJ Genom Med ; 7(1): 27, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35395838

ABSTRACT

Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices. Here, we present best practice recommendations for the interpretation and reporting of clinical diagnostic WGS, including discussion of challenges and emerging approaches that will be critical to harness the full potential of this comprehensive test.

7.
Genet Med ; 24(1): 179-191, 2022 01.
Article in English | MEDLINE | ID: mdl-34906456

ABSTRACT

PURPOSE: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. METHODS: We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. RESULTS: The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. CONCLUSION: We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature.


Subject(s)
Intellectual Disability , Language Development Disorders , Musculoskeletal Abnormalities , Haploinsufficiency , Humans , Intellectual Disability/diagnosis , Language Development Disorders/genetics , Musculoskeletal Abnormalities/genetics , Phenotype
8.
Leuk Lymphoma ; 63(4): 865-875, 2022 04.
Article in English | MEDLINE | ID: mdl-34898335

ABSTRACT

ATM deletions and/or mutations are recurrent in lymphoid neoplasms while rearrangements are rare. In this study, we used mate pair sequencing (MPseq) technology to characterize two novel ATM rearrangements in one patient with chronic lymphocytic leukemia (CLL) and one patient with T-prolymphocytic leukemia (T-PLL). Both patients showed chromosome 11q22 aberrations encompassing ATM by conventional karyotype and fluorescence in situ hybridization: isolated t(11;13)(q22;q14) in CLL and a complex karyotype with apparent 11q deletion and unbalanced der(14)t(11;14)(q22;p11.2) in T-PLL. MPseq identified ATM-LINC00371 fusion in CLL and ATM-USP28 in T-PLL, both of which led to ATM inactivation, confirmed by loss of immunohistochemical protein expression. Next-generation sequencing mutation analysis detected concurrent ATM mutation(s) CLL patient, while T-PLL lacked ATM mutation. ATM rearrangements, not apparently detectable using standard laboratory technologies, represent another mechanism of loss-of-function. Recent high-throughput technologies such as MPseq can uncover novel pathogenic gene fusions and resolve complex chromosomal rearrangements in hematologic malignancies.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia, Prolymphocytic, T-Cell , Leukemia, Prolymphocytic , Ataxia Telangiectasia Mutated Proteins/genetics , Chromosome Aberrations , Humans , In Situ Hybridization, Fluorescence , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Prolymphocytic/genetics , Leukemia, Prolymphocytic, T-Cell/diagnosis , Leukemia, Prolymphocytic, T-Cell/genetics , Mutation , Ubiquitin Thiolesterase/genetics
9.
Blood Adv ; 5(17): 3492-3496, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34505882

ABSTRACT

The basis for acquired resistance to JAK inhibition in patients with JAK2-driven hematologic malignancies is not well understood. We report a patient with a myeloproliferative neoplasm (MPN) with a BCR activator of RhoGEF and GTPase (BCR)-JAK2 fusion with initial hematologic response to ruxolitinib who rapidly developed B-lymphoid blast transformation. We analyzed pre-ruxolitinib and blast transformation samples using genome sequencing, DNA mate-pair sequencing (MPseq), RNA sequencing (RNA-seq), and chromosomal microarray to characterize possible mechanisms of resistance. No resistance mutations in the BCR-JAK2 fusion gene or transcript were identified, and fusion transcript expression levels remained stable. However, at the time of blast transformation, MPseq detected a new IKZF1 copy-number loss, which is predicted to result in loss of normal IKZF1 protein translation. RNA-seq revealed significant upregulation of genes negatively regulated by IKZF1, including IL7R and CRLF2. Disease progression was also characterized by adaptation to an activated B-cell receptor (BCR)-like signaling phenotype, with marked upregulation of genes such as CD79A, CD79B, IGLL1, VPREB1, BLNK, ZAP70, RAG1, and RAG2. In summary, IKZF1 deletion and a switch from cytokine dependence to activated BCR-like signaling phenotype represent putative mechanisms of ruxolitinib resistance in this case, recapitulating preclinical data on resistance to JAK inhibition in CRLF2-rearranged Philadelphia chromosome-like acute lymphoblastic leukemia.


Subject(s)
Lymphocyte Activation , Myeloproliferative Disorders , Humans , Janus Kinase 2/genetics , Nitriles , Pyrazoles/therapeutic use , Pyrimidines , Receptors, Antigen, B-Cell
10.
Genet Med ; 23(11): 2029-2037, 2021 11.
Article in English | MEDLINE | ID: mdl-34211152

ABSTRACT

PURPOSE: To develop an evidence-based clinical practice guideline for the use of exome and genome sequencing (ES/GS) in the care of pediatric patients with one or more congenital anomalies (CA) with onset prior to age 1 year or developmental delay (DD) or intellectual disability (ID) with onset prior to age 18 years. METHODS: The Pediatric Exome/Genome Sequencing Evidence-Based Guideline Work Group (n = 10) used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) evidence to decision (EtD) framework based on the recent American College of Medical Genetics and Genomics (ACMG) systematic review, and an Ontario Health Technology Assessment to develop and present evidence summaries and health-care recommendations. The document underwent extensive internal and external peer review, and public comment, before approval by the ACMG Board of Directors. RESULTS: The literature supports the clinical utility and desirable effects of ES/GS on active and long-term clinical management of patients with CA/DD/ID, and on family-focused and reproductive outcomes with relatively few harms. Compared with standard genetic testing, ES/GS has a higher diagnostic yield and may be more cost-effective when ordered early in the diagnostic evaluation. CONCLUSION: We strongly recommend that ES/GS be considered as a first- or second-tier test for patients with CA/DD/ID.


Subject(s)
Genetics, Medical , Intellectual Disability , Child , Exome/genetics , Genomics , Humans , Infant , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Practice Guidelines as Topic , United States , Exome Sequencing
12.
Clin Case Rep ; 9(2): 769-774, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33598243

ABSTRACT

This case report underlines the importance of molecular characterization of genomic duplications and other structural variants in the prenatal setting to guide clinical interpretation, genetic counseling, and perinatal medical care.

13.
Arch Pathol Lab Med ; 145(2): 176-190, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32886736

ABSTRACT

CONTEXT.­: One goal of the joint College of American Pathologists/American College of Medical Genetics and Genomics Cytogenetics Committee is to ensure the accurate detection and description of chromosomal abnormalities in both constitutional and neoplastic specimens, including hematologic neoplasms. OBJECTIVE.­: To report a 20-year performance summary (1999-2018) of conventional chromosome challenges focusing on hematologic neoplasms. DESIGN.­: A retrospective review was performed from 1999 through 2018 to identify karyotype challenges specifically addressing hematologic neoplasms. The overall performance of participants was examined to identify potential recurring errors of clinical significance. RESULTS.­: Of 288 total conventional chromosome challenges from 1999-2018, 87 (30.2%) were presented in the context of a hematologic neoplasm, based on the provided clinical history, specimen type, and/or chromosomal abnormalities. For these 87 hematologic neoplasm challenges, 91 individual cases were provided and graded on the basis of abnormality recognition and karyotype nomenclature (ISCN, International System for Human Cytogenomic [previously Cytogenetic] Nomenclature). Of the 91 cases, 89 (97.8%) and 87 (95.6%) exceeded the required 80% consensus for grading of abnormality recognition and correct karyotype nomenclature, respectively. The 2 cases (2 of 91; 2.2%) that failed to meet the 80% consensus for abnormality recognition had complex karyotypes. The 4 cases (4 of 91; 4.4%) that failed to meet the 80% consensus for correct karyotype nomenclature were the result of incorrect abnormality recognition (2 cases), missing brackets in the karyotype (1 case), and incorrect breakpoint designation (1 case). CONCLUSIONS.­: This 20-year review demonstrates clinical cytogenetics laboratories have been and continue to be highly proficient in the detection and description of chromosomal abnormalities associated with hematologic neoplasms.


Subject(s)
Chromosome Aberrations , Hematologic Neoplasms/diagnosis , Laboratory Proficiency Testing/statistics & numerical data , American Medical Association , Cytogenetic Analysis , Genetics, Medical , Genomics , Hematologic Neoplasms/genetics , Humans , Karyotype , Pathologists , Professional Staff Committees , United States
14.
NPJ Genom Med ; 5: 47, 2020.
Article in English | MEDLINE | ID: mdl-33110627

ABSTRACT

Whole-genome sequencing (WGS) has shown promise in becoming a first-tier diagnostic test for patients with rare genetic disorders; however, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading healthcare and research organizations in the US and Canada, was formed to expand access to high-quality clinical WGS by publishing best practices. Here, we present consensus recommendations on clinical WGS analytical validation for the diagnosis of individuals with suspected germline disease with a focus on test development, upfront considerations for test design, test validation practices, and metrics to monitor test performance. This work also provides insight into the current state of WGS testing at each member institution, including the utilization of reference and other standards across sites. Importantly, members of this initiative strongly believe that clinical WGS is an appropriate first-tier test for patients with rare genetic disorders, and at minimum is ready to replace chromosomal microarray analysis and whole-exome sequencing. The recommendations presented here should reduce the burden on laboratories introducing WGS into clinical practice, and support safe and effective WGS testing for diagnosis of germline disease.

15.
Genet Med ; 22(12): 2120-2124, 2020 12.
Article in English | MEDLINE | ID: mdl-32820244

ABSTRACT

PURPOSE: Copy-number variants (CNVs) of uncertain clinical significance are routinely reported in a clinical setting only when exceeding predetermined reporting thresholds, typically based on CNV size. Given that very few genes are associated with triplosensitive phenotypes, it is not surprising that many interstitial duplications <1 Mb are found to be inherited and anticipated to be of limited or no clinical significance. METHODS: In an effort to further refine our reporting criteria to maximize diagnostic yield while minimizing the return of uncertain variants, we performed a retrospective analysis of all clinical microarray cases reported in a 10-year window. A total of 1112 reported duplications had parental follow-up, and these were compared by size, RefSeq gene content, and inheritance pattern. De novo origin was used as a rough proxy for pathogenicity. RESULTS: Approximately 6% of duplications 500 kb-1 Mb were de novo observations, compared with approximately 14% for 1-2 Mb duplications (p = 0.0005). On average, de novo duplications had higher gene counts than inherited duplications. CONCLUSION: Our data reveal limited diagnostic utility for duplications of uncertain significance <1 Mb. Considerations for revised reporting criteria are discussed and are applicable to CNVs detected by any genome-wide exploratory methodology, including exome/genome sequencing.


Subject(s)
DNA Copy Number Variations , Exome , DNA Copy Number Variations/genetics , Microarray Analysis , Retrospective Studies , Exome Sequencing
16.
Genome Med ; 12(1): 48, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32460895

ABSTRACT

Clinical whole-genome sequencing (WGS) offers clear diagnostic benefits for patients with rare disease. However, there are barriers to its widespread adoption, including a lack of standards for clinical practice. The Medical Genome Initiative consortium was formed to provide practical guidance and support the development of standards for the use of clinical WGS.


Subject(s)
Genome, Human , Rare Diseases/diagnosis , Rare Diseases/genetics , Whole Genome Sequencing , Humans , Whole Genome Sequencing/standards
18.
Prenat Diagn ; 40(7): 831-837, 2020 06.
Article in English | MEDLINE | ID: mdl-32274800

ABSTRACT

OBJECTIVE: We aimed to test for an association between the amount of circulating fetal cell-free DNA and trisomy, and whether NIPS failure due to low fetal fraction indicates trisomy risk. METHOD: Maternal BMI, maternal age, fetal sex, gestational age, fetal cfDNA fraction, and NIPS results was collected on 2374 pregnancies. Additional clinical information was available for 1180 research consented patients. We investigated associations between fetal fraction and available variables and determined the success rate of repeat NIPS testing. RESULTS: Fetal trisomy was marginally associated with decreased fetal fraction (P = .067). However, the proportions of trisomy events were not significantly increased in women who had failed NIPS due to low fetal fraction (<4%) (OR = 1.37 [0.3-7.4]; P = .714). 66% of repeated NIPS after a second blood draw were successful. CONCLUSION: Failure to meet the clinical cutoff of 4% fetal fraction established for NIPS accuracy did not suggest increased risk for trisomy in our cohort. Because repeat testing was successful in the majority of cases and most failures were explained by high BMI and low gestational age, a redraw may be an appropriate next step before invasive screening due to concerns for trisomic pregnancies.


Subject(s)
Cell-Free Nucleic Acids/blood , Fetus/metabolism , Noninvasive Prenatal Testing , Trisomy/diagnosis , Adult , Blood Specimen Collection/adverse effects , Blood Specimen Collection/methods , Blood Specimen Collection/standards , Blood Specimen Collection/statistics & numerical data , Cell-Free Nucleic Acids/analysis , Cohort Studies , False Positive Reactions , Female , Gestational Age , Humans , Maternal Age , Noninvasive Prenatal Testing/methods , Noninvasive Prenatal Testing/standards , Noninvasive Prenatal Testing/statistics & numerical data , Pregnancy , Pregnancy Trimester, First/blood , Reproducibility of Results , Trisomy/genetics
19.
Mol Syndromol ; 10(6): 327-331, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32021607

ABSTRACT

Interstitial and terminal deletions of chromosome 4q have been described for many years and have variable phenotypes depending on the size of the deletion present. Clinical features can include developmental delay, growth difficulty, digital differences, dysmorphic features, and cardiac anomalies. Here, we present an infant with pseudohypoaldosteronism found to have a deletion of 4q31.21q31.23, including NR3C2. Heterozygous mutations in NR3C2 have been reported to cause autosomal dominant pseudohypoaldosteronism type 1 (PHA1A). This represents a rare case of PHA1A due to a contiguous interstitial deletion and highlights the importance of evaluating patients with overlapping deletions for PHA1A.

20.
Genet Med ; 22(2): 245-257, 2020 02.
Article in English | MEDLINE | ID: mdl-31690835

ABSTRACT

PURPOSE: Copy-number analysis to detect disease-causing losses and gains across the genome is recommended for the evaluation of individuals with neurodevelopmental disorders and/or multiple congenital anomalies, as well as for fetuses with ultrasound abnormalities. In the decade that this analysis has been in widespread clinical use, tremendous strides have been made in understanding the effects of copy-number variants (CNVs) in both affected individuals and the general population. However, continued broad implementation of array and next-generation sequencing-based technologies will expand the types of CNVs encountered in the clinical setting, as well as our understanding of their impact on human health. METHODS: To assist clinical laboratories in the classification and reporting of CNVs, irrespective of the technology used to identify them, the American College of Medical Genetics and Genomics has developed the following professional standards in collaboration with the National Institutes of Health (NIH)-funded Clinical Genome Resource (ClinGen) project. RESULTS: This update introduces a quantitative, evidence-based scoring framework; encourages the implementation of the five-tier classification system widely used in sequence variant classification; and recommends "uncoupling" the evidence-based classification of a variant from its potential implications for a particular individual. CONCLUSION: These professional standards will guide the evaluation of constitutional CNVs and encourage consistency and transparency across clinical laboratories.


Subject(s)
DNA Copy Number Variations/genetics , Genetic Testing/standards , High-Throughput Nucleotide Sequencing/standards , Abnormalities, Multiple/genetics , Consensus , Genetic Variation/genetics , Genome, Human/genetics , Genomics/standards , Humans , Mutation/genetics , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...