Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36609487

ABSTRACT

BACKGROUND: Poly (ADP-ribose) polymerase (PARP) inhibition (PARPi) has demonstrated potent therapeutic efficacy in patients with BRCA-mutant ovarian cancer. However, acquired resistance to PARPi remains a major challenge in the clinic. METHODS: PARPi-resistant ovarian cancer mouse models were generated by long-term treatment of olaparib in syngeneic Brca1-deficient ovarian tumors. Signal transducer and activator of transcription 3 (STAT3)-mediated immunosuppression was investigated in vitro by co-culture experiments and in vivo by analysis of immune cells in the tumor microenvironment (TME) of human and mouse PARPi-resistant tumors. Whole genome transcriptome analysis was performed to assess the antitumor immunomodulatory effect of STING (stimulator of interferon genes) agonists on myeloid cells in the TME of PARPi-resistant ovarian tumors. A STING agonist was used to overcome STAT3-mediated immunosuppression and acquired PARPi resistance in syngeneic and patient-derived xenografts models of ovarian cancer. RESULTS: In this study, we uncover an adaptive resistance mechanism to PARP inhibition mediated by tumor-associated macrophages (TAMs) in the TME. Markedly increased populations of protumor macrophages are found in BRCA-deficient ovarian tumors that rendered resistance to PARPi in both murine models and patients. Mechanistically, PARP inhibition elevates the STAT3 signaling pathway in tumor cells, which in turn promotes protumor polarization of TAMs. STAT3 ablation in tumor cells mitigates polarization of protumor macrophages and increases tumor-infiltrating T cells on PARP inhibition. These findings are corroborated in patient-derived, PARPi-resistant BRCA1-mutant ovarian tumors. Importantly, STING agonists reshape the immunosuppressive TME by reprogramming myeloid cells and overcome the TME-dependent adaptive resistance to PARPi in ovarian cancer. This effect is further enhanced by addition of the programmed cell death protein-1 blockade. CONCLUSIONS: We elucidate an adaptive immunosuppression mechanism rendering resistance to PARPi in BRCA1-mutant ovarian tumors. This is mediated by enrichment of protumor TAMs propelled by PARPi-induced STAT3 activation in tumor cells. We also provide a new strategy to reshape the immunosuppressive TME with STING agonists and overcome PARPi resistance in ovarian cancer.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Female , Humans , Mice , Cell Line, Tumor , Immunosuppression Therapy , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , STAT3 Transcription Factor/metabolism , Tumor Microenvironment
2.
Mol Biol Evol ; 34(5): 1066-1082, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28104747

ABSTRACT

New genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from noncoding DNA sequences. While there are numerous examples of duplicated genes with important functional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila melanogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown (KD) males fail to produce mature sperm, while saturn KD males produce few sperm, and these function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the noncoding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can acquire essential roles in male reproduction.


Subject(s)
Drosophila melanogaster/genetics , Fertility/genetics , Spermatogenesis/genetics , Animals , Biological Evolution , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Evolution, Molecular , Gene Duplication/genetics , Gene Knockdown Techniques/methods , Male , Spermatozoa/metabolism , Testis/metabolism
3.
Nucleic Acids Res ; 42(3): 1757-71, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24170811

ABSTRACT

Cells respond to variable environments by changing gene expression and gene interactions. To study how human cells response to stress, we analyzed the expression of >5000 genes in cultured B cells from nearly 100 normal individuals following endoplasmic reticulum stress and exposure to ionizing radiation. We identified thousands of genes that are induced or repressed. Then, we constructed coexpression networks and inferred interactions among genes. We used coexpression and machine learning analyses to study how genes interact with each other in response to stress. The results showed that for most genes, their interactions with each other are the same at baseline and in response to different stresses; however, a small set of genes acquired new interacting partners to engage in stress-specific responses. These genes with altered interacting partners are associated with diseases in which endoplasmic reticulum stress response or sensitivity to radiation has been implicated. Thus, our findings showed that to understand disease-specific pathways, it is important to identify not only genes that change expression levels but also those that alter interactions with other genes.


Subject(s)
Gene Expression Regulation , Stress, Physiological/genetics , Artificial Intelligence , Cells, Cultured , Endoplasmic Reticulum Stress/genetics , Gene Regulatory Networks , Radiation, Ionizing
SELECTION OF CITATIONS
SEARCH DETAIL
...