Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Protein Sci ; 33(8): e5094, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989636

ABSTRACT

Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of short linear motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. This expanded our understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.


Subject(s)
Homer Scaffolding Proteins , Homer Scaffolding Proteins/metabolism , Homer Scaffolding Proteins/chemistry , Homer Scaffolding Proteins/genetics , Humans , Protein Domains , Protein Binding , Amino Acid Motifs
2.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38645240

ABSTRACT

Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of Short Linear Motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. In doing so, we expanded current understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.

3.
Proc Natl Acad Sci U S A ; 120(18): e2221163120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098061

ABSTRACT

The evolution of novel functions in biology relies heavily on gene duplication and divergence, creating large paralogous protein families. Selective pressure to avoid detrimental cross-talk often results in paralogs that exhibit exquisite specificity for their interaction partners. But how robust or sensitive is this specificity to mutation? Here, using deep mutational scanning, we demonstrate that a paralogous family of bacterial signaling proteins exhibits marginal specificity, such that many individual substitutions give rise to substantial cross-talk between normally insulated pathways. Our results indicate that sequence space is locally crowded despite overall sparseness, and we provide evidence that this crowding has constrained the evolution of bacterial signaling proteins. These findings underscore how evolution selects for "good enough" rather than optimized phenotypes, leading to restrictions on the subsequent evolution of paralogs.


Subject(s)
Evolution, Molecular , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Signal Transduction , Mutation , Phylogeny
4.
Structure ; 31(3): 265-281.e7, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36706751

ABSTRACT

Apoptosis is important for development and tissue homeostasis, and its dysregulation can lead to diseases, including cancer. As an apoptotic effector, BAK undergoes conformational changes that promote mitochondrial outer membrane disruption, leading to cell death. This is termed "activation" and can be induced by peptides from the human proteins BID, BIM, and PUMA. To identify additional peptides that can regulate BAK, we used computational protein design, yeast surface display screening, and structure-based energy scoring to identify 10 diverse new binders. We discovered peptides from the human proteins BNIP5 and PXT1 and three non-native peptides that activate BAK in liposome assays and induce cytochrome c release from mitochondria. Crystal structures and binding studies reveal a high degree of similarity among peptide activators and inhibitors, ruling out a simple function-determining property. Our results shed light on the vast peptide sequence space that can regulate BAK function and will guide the design of BAK-modulating tools and therapeutics.


Subject(s)
Apoptosis Regulatory Proteins , Proto-Oncogene Proteins , Humans , Proto-Oncogene Proteins/chemistry , Apoptosis Regulatory Proteins/chemistry , Bcl-2-Like Protein 11 , bcl-X Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/chemistry , bcl-2 Homologous Antagonist-Killer Protein/metabolism , Apoptosis/physiology , Peptides , bcl-2-Associated X Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/chemistry
5.
Protein Sci ; 32(2): e4554, 2023 02.
Article in English | MEDLINE | ID: mdl-36564857

ABSTRACT

Designing novel proteins to perform desired functions, such as binding or catalysis, is a major goal in synthetic biology. A variety of computational approaches can aid in this task. An energy-based framework rooted in the sequence-structure statistics of tertiary motifs (TERMs) can be used for sequence design on predefined backbones. Neural network models that use backbone coordinate-derived features provide another way to design new proteins. In this work, we combine the two methods to make neural structure-based models more suitable for protein design. Specifically, we supplement backbone-coordinate features with TERM-derived data, as inputs, and we generate energy functions as outputs. We present two architectures that generate Potts models over the sequence space: TERMinator, which uses both TERM-based and coordinate-based information, and COORDinator, which uses only coordinate-based information. Using these two models, we demonstrate that TERMs can be utilized to improve native sequence recovery performance of neural models. Furthermore, we demonstrate that sequences designed by TERMinator are predicted to fold to their target structures by AlphaFold. Finally, we show that both TERMinator and COORDinator learn notions of energetics, and these methods can be fine-tuned on experimental data to improve predictions. Our results suggest that using TERM-based and coordinate-based features together may be beneficial for protein design and that structure-based neural models that produce Potts energy tables have utility for flexible applications in protein science.


Subject(s)
Neural Networks, Computer , Proteins , Amino Acid Sequence , Proteins/chemistry
6.
bioRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38187731

ABSTRACT

Peptides can bind to specific sites on larger proteins and thereby function as inhibitors and regulatory elements. Peptide fragments of larger proteins are particularly attractive for achieving these functions due to their inherent potential to form native-like binding interactions. Recently developed experimental approaches allow for high-throughput measurement of protein fragment inhibitory activity in living cells. However, it has thus far not been possible to predict de novo which of the many possible protein fragments bind their protein targets, let alone act as inhibitors. We have developed a computational method, FragFold, that employs AlphaFold to predict protein fragment binding to full-length protein targets in a high-throughput manner. Applying FragFold to thousands of fragments tiling across diverse proteins revealed peaks of predicted binding along each protein sequence. These predictions were compared with experimentally measured peaks of inhibitory activity in E. coli. We establish that our approach is a sensitive predictor of protein fragment function: Evaluating inhibitory fragments derived from known protein-protein interaction interfaces, we found 87% were predicted by FragFold to bind in a native-like mode. Across full protein sequences, 68% of FragFold-predicted binding peaks match experimentally measured inhibitory peaks. This is true even when the underlying inhibitory mechanism is unclear from existing structural data, and we find FragFold is able to predict novel binding modes for inhibitory fragments of unknown structure, explaining previous genetic and biochemical data for these fragments. The success rate of FragFold demonstrates that this computational approach should be broadly applicable for discovering inhibitory protein fragments across proteomes.

7.
Protein Sci ; 31(11): e4429, 2022 11.
Article in English | MEDLINE | ID: mdl-36305766

ABSTRACT

TRAF6 is an adaptor protein involved in signaling pathways that are essential for development and the immune system. It participates in many protein-protein interactions, some of which are mediated by the C-terminal MATH domain, which binds to short peptide segments containing the motif PxExx[FYWHDE], where x is any amino acid. Blocking MATH domain interactions is associated with favorable effects in various disease models. To better define TRAF6 MATH domain binding preferences, we screened a combinatorial library using bacterial cell-surface peptide display. We identified 236 of the best TRAF6-interacting peptides and a set of 1,200 peptides that match the sequence PxE but do not bind TRAF6 MATH. The peptides that were most enriched in the screen bound TRAF6 tighter than previously measured native peptides. To better understand the structural basis for TRAF6 interaction preferences, we built all-atom structural models of the MATH domain in complex with high-affinity binders and nonbinders identified in the screen. We identified favorable interactions for motif features in binders as well as negative design elements distributed across the motif that can disfavor or preclude binding. Searching the human proteome revealed that the most biologically relevant TRAF6 motif matches occupy a different sequence space from the best hits discovered in combinatorial library screening, suggesting that native interactions are not optimized for affinity. Our experimentally determined binding preferences and structural models support the design of peptide-based interaction inhibitors with higher affinities than endogenous TRAF6 ligands.


Subject(s)
Peptides , TNF Receptor-Associated Factor 6 , Humans , TNF Receptor-Associated Factor 6/metabolism , Amino Acid Sequence , Models, Molecular , Protein Binding , Peptides/chemistry
8.
Protein Sci ; 31(6): e4322, 2022 06.
Article in English | MEDLINE | ID: mdl-35634780

ABSTRACT

Despite advances in protein engineering, the de novo design of small proteins or peptides that bind to a desired target remains a difficult task. Most computational methods search for binder structures in a library of candidate scaffolds, which can lead to designs with poor target complementarity and low success rates. Instead of choosing from pre-defined scaffolds, we propose that custom peptide structures can be constructed to complement a target surface. Our method mines tertiary motifs (TERMs) from known structures to identify surface-complementing fragments or "seeds." We combine seeds that satisfy geometric overlap criteria to generate peptide backbones and score the backbones to identify the most likely binding structures. We found that TERM-based seeds can describe known binding structures with high resolution: the vast majority of peptide binders from 486 peptide-protein complexes can be covered by seeds generated from single-chain structures. Furthermore, we demonstrate that known peptide structures can be reconstructed with high accuracy from peptide-covering seeds. As a proof of concept, we used our method to design 100 peptide binders of TRAF6, seven of which were predicted by Rosetta to form higher-quality interfaces than a native binder. The designed peptides interact with distinct sites on TRAF6, including the native peptide-binding site. These results demonstrate that known peptide-binding structures can be constructed from TERMs in single-chain structures and suggest that TERM information can be applied to efficiently design novel target-complementing binders.


Subject(s)
Peptides , TNF Receptor-Associated Factor 6 , Binding Sites , Peptides/chemistry , Protein Binding , Protein Engineering , TNF Receptor-Associated Factor 6/metabolism
9.
Elife ; 112022 01 25.
Article in English | MEDLINE | ID: mdl-35076015

ABSTRACT

The human proteome is replete with short linear motifs (SLiMs) of four to six residues that are critical for protein-protein interactions, yet the importance of the sequence surrounding such motifs is underexplored. We devised a proteomic screen to examine the influence of SLiM sequence context on protein-protein interactions. Focusing on the EVH1 domain of human ENAH, an actin regulator that is highly expressed in invasive cancers, we screened 36-residue proteome-derived peptides and discovered new interaction partners of ENAH and diverse mechanisms by which context influences binding. A pocket on the ENAH EVH1 domain that has diverged from other Ena/VASP paralogs recognizes extended SLiMs and favors motif-flanking proline residues. Many high-affinity ENAH binders that contain two proline-rich SLiMs use a noncanonical site on the EVH1 domain for binding and display a thermodynamic signature consistent with the two-motif chain engaging a single domain. We also found that photoreceptor cilium actin regulator (PCARE) uses an extended 23-residue region to obtain a higher affinity than any known ENAH EVH1-binding motif. Our screen provides a way to uncover the effects of proteomic context on motif-mediated binding, revealing diverse mechanisms of control over EVH1 interactions and establishing that SLiMs can't be fully understood outside of their native context.


Subject(s)
Actins/metabolism , Binding Sites , DNA-Binding Proteins/metabolism , Microfilament Proteins/metabolism , Proline/metabolism , Cell Adhesion Molecules/metabolism , HEK293 Cells , Humans , Proteomics
10.
Elife ; 102021 12 02.
Article in English | MEDLINE | ID: mdl-34854809

ABSTRACT

Metazoan proteomes contain many paralogous proteins that have evolved distinct functions. The Ena/VASP family of actin regulators consists of three members that share an EVH1 interaction domain with a 100 % conserved binding site. A proteome-wide screen revealed photoreceptor cilium actin regulator (PCARE) as a high-affinity ligand for ENAH EVH1. Here, we report the surprising observation that PCARE is ~100-fold specific for ENAH over paralogs VASP and EVL and can selectively bind ENAH and inhibit ENAH-dependent adhesion in cells. Specificity arises from a mechanism whereby PCARE stabilizes a conformation of the ENAH EVH1 domain that is inaccessible to family members VASP and EVL. Structure-based modeling rapidly identified seven residues distributed throughout EVL that are sufficient to differentiate binding by ENAH vs. EVL. By exploiting the ENAH-specific conformation, we rationally designed the tightest and most selective ENAH binder to date. Our work uncovers a conformational mechanism of interaction specificity that distinguishes highly similar paralogs and establishes tools for dissecting specific Ena/VASP functions in processes including cancer cell invasion.


Subject(s)
Actins/metabolism , Binding Sites , Cell Adhesion Molecules/metabolism , Eye Proteins/metabolism , Microfilament Proteins/metabolism , Phosphoproteins/metabolism , HEK293 Cells , Humans , MCF-7 Cells , Molecular Conformation , Protein Domains
11.
Curr Opin Struct Biol ; 69: 63-69, 2021 08.
Article in English | MEDLINE | ID: mdl-33910104

ABSTRACT

Computational protein design can generate proteins not found in nature that adopt desired structures and perform novel functions. Although proteins could, in theory, be designed with ab initio methods, practical success has come from using large amounts of data that describe the sequences, structures, and functions of existing proteins and their variants. We present recent creative uses of multiple-sequence alignments, protein structures, and high-throughput functional assays in computational protein design. Approaches range from enhancing structure-based design with experimental data to building regression models to training deep neural nets that generate novel sequences. Looking ahead, deep learning will be increasingly important for maximizing the value of data for protein design.


Subject(s)
Computational Biology , Proteins , Proteins/genetics , Sequence Alignment
12.
Cell ; 183(6): 1682-1698.e24, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33232692

ABSTRACT

In order to analyze how a signal transduction network converts cellular inputs into cellular outputs, ideally one would measure the dynamics of many signals within the network simultaneously. We found that, by fusing a fluorescent reporter to a pair of self-assembling peptides, it could be stably clustered within cells at random points, distant enough to be resolved by a microscope but close enough to spatially sample the relevant biology. Because such clusters, which we call signaling reporter islands (SiRIs), can be modularly designed, they permit a set of fluorescent reporters to be efficiently adapted for simultaneous measurement of multiple nodes of a signal transduction network within single cells. We created SiRIs for indicators of second messengers and kinases and used them, in hippocampal neurons in culture and intact brain slices, to discover relationships between the speed of calcium signaling, and the amplitude of PKA signaling, upon receiving a cAMP-driving stimulus.


Subject(s)
Fluorescent Dyes/metabolism , Genes, Reporter , Optical Imaging , Signal Transduction , Animals , Calcium/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Green Fluorescent Proteins/metabolism , HeLa Cells , Hippocampus/metabolism , Humans , Mice , Neurons/metabolism , Peptides/metabolism , Proteins/metabolism , Pyramidal Cells/metabolism
13.
Neuron ; 107(3): 470-486.e11, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32592656

ABSTRACT

Methods for one-photon fluorescent imaging of calcium dynamics can capture the activity of hundreds of neurons across large fields of view at a low equipment complexity and cost. In contrast to two-photon methods, however, one-photon methods suffer from higher levels of crosstalk from neuropil, resulting in a decreased signal-to-noise ratio and artifactual correlations of neural activity. We address this problem by engineering cell-body-targeted variants of the fluorescent calcium indicators GCaMP6f and GCaMP7f. We screened fusions of GCaMP to natural, as well as artificial, peptides and identified fusions that localized GCaMP to within 50 µm of the cell body of neurons in mice and larval zebrafish. One-photon imaging of soma-targeted GCaMP in dense neural circuits reported fewer artifactual spikes from neuropil, an increased signal-to-noise ratio, and decreased artifactual correlation across neurons. Thus, soma-targeting of fluorescent calcium indicators facilitates usage of simple, powerful, one-photon methods for imaging neural calcium dynamics.


Subject(s)
Brain/diagnostic imaging , Calcium/metabolism , Cell Body/pathology , Neurons/pathology , Optical Imaging/methods , Animals , Artifacts , Brain/metabolism , Brain/pathology , Calcium-Binding Proteins , Cell Body/metabolism , Green Fluorescent Proteins , Mice , Neurons/metabolism , Neuropil , Zebrafish
14.
Structure ; 27(4): 606-617.e5, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30773399

ABSTRACT

Understanding the relationship between protein sequence and structure well enough to design new proteins with desired functions is a longstanding goal in protein science. Here, we show that recurring tertiary structural motifs (TERMs) in the PDB provide rich information for protein-peptide interaction prediction and design. TERM statistics can be used to predict peptide binding energies for Bcl-2 family proteins as accurately as widely used structure-based tools. Furthermore, design using TERM energies (dTERMen) rapidly and reliably generates high-affinity peptide binders of anti-apoptotic proteins Bfl-1 and Mcl-1 with just 15%-38% sequence identity to any known native Bcl-2 family protein ligand. High-resolution structures of four designed peptides bound to their targets provide opportunities to analyze the strengths and limitations of the computational design method. Our results support dTERMen as a powerful approach that can complement existing tools for protein engineering.


Subject(s)
Minor Histocompatibility Antigens/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Peptides/chemistry , Proto-Oncogene Proteins c-bcl-2/chemistry , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Molecular Docking Simulation , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Peptides/genetics , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Engineering , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Alignment , Structure-Activity Relationship , Thermodynamics
15.
Proc Natl Acad Sci U S A ; 115(44): E10342-E10351, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30322927

ABSTRACT

Many applications in protein engineering require optimizing multiple protein properties simultaneously, such as binding one target but not others or binding a target while maintaining stability. Such multistate design problems require navigating a high-dimensional space to find proteins with desired characteristics. A model that relates protein sequence to functional attributes can guide design to solutions that would be hard to discover via screening. In this work, we measured thousands of protein-peptide binding affinities with the high-throughput interaction assay amped SORTCERY and used the data to parameterize a model of the alpha-helical peptide-binding landscape for three members of the Bcl-2 family of proteins: Bcl-xL, Mcl-1, and Bfl-1. We applied optimization protocols to explore extremes in this landscape to discover peptides with desired interaction profiles. Computational design generated 36 peptides, all of which bound with high affinity and specificity to just one of Bcl-xL, Mcl-1, or Bfl-1, as intended. We designed additional peptides that bound selectively to two out of three of these proteins. The designed peptides were dissimilar to known Bcl-2-binding peptides, and high-resolution crystal structures confirmed that they engaged their targets as expected. Excellent results on this challenging problem demonstrate the power of a landscape modeling approach, and the designed peptides have potential uses as diagnostic tools or cancer therapeutics.


Subject(s)
Peptides/chemistry , Peptides/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Cell Line , Escherichia coli/metabolism , Humans , Mice , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Binding/physiology , Protein Engineering/methods , Proto-Oncogene Proteins c-bcl-2/metabolism , Yeasts/metabolism , bcl-X Protein/metabolism
17.
Proc Natl Acad Sci U S A ; 115(5): E886-E895, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29339518

ABSTRACT

Bcl-2 family proteins regulate apoptosis, and aberrant interactions of overexpressed antiapoptotic family members such as Mcl-1 promote cell transformation, cancer survival, and resistance to chemotherapy. Discovering potent and selective Mcl-1 inhibitors that can relieve apoptotic blockades is thus a high priority for cancer research. An attractive strategy for disabling Mcl-1 involves using designer peptides to competitively engage its binding groove, mimicking the structural mechanism of action of native sensitizer BH3-only proteins. We transformed Mcl-1-binding peptides into α-helical, cell-penetrating constructs that are selectively cytotoxic to Mcl-1-dependent cancer cells. Critical to the design of effective inhibitors was our introduction of an all-hydrocarbon cross-link or "staple" that stabilizes α-helical structure, increases target binding affinity, and independently confers binding specificity for Mcl-1 over related Bcl-2 family paralogs. Two crystal structures of complexes at 1.4 Å and 1.9 Å resolution demonstrate how the hydrophobic staple induces an unanticipated structural rearrangement in Mcl-1 upon binding. Systematic sampling of staple location and iterative optimization of peptide sequence in accordance with established design principles provided peptides that target intracellular Mcl-1. This work provides proof of concept for the development of potent, selective, and cell-permeable stapled peptides for therapeutic targeting of Mcl-1 in cancer, applying a design and validation workflow applicable to a host of challenging biomedical targets.


Subject(s)
Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms/metabolism , Peptides/chemistry , Animals , Binding Sites , Cell Line , Cell Survival , Circular Dichroism , Crystallography, X-Ray , Cytoplasm/metabolism , Drug Design , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Mice , Mutation , Protein Binding , Protein Interaction Mapping , Spectrometry, Fluorescence
18.
Protein Sci ; 27(1): 276-285, 2018 01.
Article in English | MEDLINE | ID: mdl-29024246

ABSTRACT

PixelDB, the Peptide Exosite Location Database, compiles 1966 non-redundant, high-resolution structures of protein-peptide complexes filtered to minimize the impact of crystal packing on peptide conformation. The database is organized to facilitate study of structurally conserved versus non-conserved elements of protein-peptide engagement. PixelDB clusters complexes based on the structural similarity of the peptide-binding protein, and by comparing complexes within a cluster highlights examples of domains that engage peptides using more than one binding mode. PixelDB also identifies conserved peptide core structural motifs characteristic of each binding mode. Peptide regions that flank core motifs often make non-structurally conserved interactions with the protein surface in regions we call exosites. Many examples establish that exosite contacts can be important for enhancing protein binding and interaction specificity. PixelDB provides a resource for computational and structural biologists to study, model, and predict core-motif and exosite-contacting peptide interactions. PixelDB is available to the community without restriction in a convenient flat-file format with accompanying visualization tools.


Subject(s)
Databases, Protein , Models, Molecular , Multiprotein Complexes/chemistry , Peptides/chemistry , Proteins/chemistry , Multiprotein Complexes/genetics , Peptides/genetics , Proteins/genetics
19.
Sci Rep ; 7(1): 10577, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874805

ABSTRACT

Synthetic protein assemblies that adopt programmed shapes would support many applications in nanotechnology. We used a rational design approach that exploits the modularity of orthogonally interacting coiled coils to create a self-assembled protein nanotriangle. Coiled coils have frequently been used to construct nanoassemblies and materials, but rarely with successful prior specification of the resulting structure. We designed a heterotrimer from three pairs of heterodimeric coiled coils that mediate specific interactions while avoiding undesired crosstalk. Non-associating pairs of coiled-coil units were strategically fused to generate three chains that were predicted to preferentially form the heterotrimer, and a rational annealing process led to the desired oligomer. Extensive biophysical characterization and modeling support the formation of a molecular triangle, which is a shape distinct from naturally occurring supramolecular nanostructures. Our approach can be extended to design more complex nanostructures using additional coiled-coil modules, other protein parts, or templated surfaces.


Subject(s)
Models, Molecular , Protein Conformation , Proteins/chemistry , Microscopy, Atomic Force , Protein Folding , Protein Multimerization , Thermodynamics
20.
Elife ; 62017 06 08.
Article in English | MEDLINE | ID: mdl-28594323

ABSTRACT

Overexpression of anti-apoptotic Bcl-2 family proteins contributes to cancer progression and confers resistance to chemotherapy. Small molecules that target Bcl-2 are used in the clinic to treat leukemia, but tight and selective inhibitors are not available for Bcl-2 paralog Bfl-1. Guided by computational analysis, we designed variants of the native BH3 motif PUMA that are > 150-fold selective for Bfl-1 binding. The designed peptides potently trigger disruption of the mitochondrial outer membrane in cells dependent on Bfl-1, but not in cells dependent on other anti-apoptotic homologs. High-resolution crystal structures show that designed peptide FS2 binds Bfl-1 in a shifted geometry, relative to PUMA and other binding partners, due to a set of epistatic mutations. FS2 modified with an electrophile reacts with a cysteine near the peptide-binding groove to augment specificity. Designed Bfl-1 binders provide reagents for cellular profiling and leads for developing enhanced and cell-permeable peptide or small-molecule inhibitors.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Mutation , Peptide Fragments/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Crystallography, X-Ray , Minor Histocompatibility Antigens , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL