Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
J Nucl Med ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960714

ABSTRACT

Despite their unique histologic features, gliosarcomas belong to the group of glioblastomas and are treated according to the same standards. Fibroblast activation protein (FAP) is a component of a tumor-specific subpopulation of fibroblasts that plays a critical role in tumor growth and invasion. Some case studies suggest an elevated expression of FAP in glioblastoma and a particularly strong expression in gliosarcoma attributed to traits of predominant mesenchymal differentiation. However, the prognostic impact of FAP and its diagnostic and therapeutic potential remain unclear. Here, we investigate the clinical relevance of FAP expression in gliosarcoma and glioblastoma and how it correlates with 68Ga-FAP inhibitor (FAPI)-46 PET uptake. Methods: Patients diagnosed with gliosarcoma or glioblastoma without sarcomatous differentiation with an overall survival of less than 2.5 y were enrolled. Histologic examination included immunohistochemistry and semiquantitative scoring of FAP (0-3, with higher values indicating stronger expression). Additionally, 68Ga-FAPI-46 PET scans were performed in a subset of glioblastomas without sarcomatous differentiation patients. The clinical SUVs were correlated with FAP expression levels in surgically derived tumor tissue and relevant prognostic factors. Results: Of the 61 patients who were enrolled, 13 of them had gliosarcoma. Immunohistochemistry revealed significantly more FAP in gliosarcomas than in glioblastomas without sarcomatous differentiation of tumor tissue (P < 0.0001). In the latter, FAP expression was confined to the perivascular space, whereas neoplastic cells additionally expressed FAP in gliosarcoma. A significant correlation of immunohistochemical FAP with SUVmean and SUVpeak of 68Ga-FAPI-46 PET indicates that clinical tracer uptake represents FAP expression of the tumor. Although gliosarcomas express higher levels of FAP than do glioblastomas without sarcomatous differentiation, overall survival does not significantly differ between the groups. Conclusion: The analysis reveals a significant correlation between SUVmean and SUVpeak in 68Ga-FAPI-46 PET and immunohistochemical FAP expression. This study indicates that FAP expression is much more abundant in the gliosarcoma subgroup of glioblastomas. This could open not only a diagnostic but also a therapeutic gap, since FAP could be explored as a theranostic target to enhance survival in a distinct subgroup of high-risk brain tumor patients with poor survival prognosis.

2.
J Neurooncol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801490

ABSTRACT

PURPOSE: Intracerebral metastases present a substantial risk of tumor-associated intracerebral hemorrhage (ICH). This study aimed to investigate the risk of hemorrhagic events in brain metastases (BM) from various primary tumor sites and evaluate the safety and outcomes of surgical tumor removal. METHODS: A retrospective, single-center review of medical records was conducted for patients who underwent BM removal between January 2016 and December 2017. Patients with hemorrhagic BM were compared to those with non-hemorrhagic BM. Data on preoperative predictors, perioperative management, and postoperative outcomes were collected and analyzed. RESULTS: A total of 229 patients met the inclusion criteria. Melanoma metastases were significantly associated with preoperative hemorrhage, even after adjusting for confounding factors (p = 0.001). Poor clinical status (p = 0.001), larger tumor volume (p = 0.020), and unfavorable prognosis (p = 0.001) independently predicted spontaneous hemorrhage. Importantly, preoperative use of anticoagulant medications was not linked to increased hemorrhagic risk (p = 0.592). Surgical removal of hemorrhagic BM, following cessation of blood-thinning medication, did not significantly affect intraoperative blood loss, surgical duration, or postoperative rebleeding risk (p > 0.096). However, intra-tumoral hemorrhage was associated with reduced overall survival (p = 0.001). CONCLUSION: This study emphasizes the safety of anticoagulation in patients with BM and highlights the safety of neurosurgical treatment in patients with hemorrhagic BM when blood-thinning medication is temporarily paused. The presence of intra-tumoral hemorrhage negatively impacts survival, highlighting its prognostic significance in BM patients. Further research with larger cohorts is warranted to validate these findings and elucidate underlying mechanisms.

3.
Nat Commun ; 15(1): 4210, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806504

ABSTRACT

The chemokine CXCL12 promotes glioblastoma (GBM) recurrence after radiotherapy (RT) by facilitating vasculogenesis. Here we report outcomes of the dose-escalation part of GLORIA (NCT04121455), a phase I/II trial combining RT and the CXCL12-neutralizing aptamer olaptesed pegol (NOX-A12; 200/400/600 mg per week) in patients with incompletely resected, newly-diagnosed GBM lacking MGMT methylation. The primary endpoint was safety, secondary endpoints included maximum tolerable dose (MTD), recommended phase II dose (RP2D), NOX-A12 plasma levels, topography of recurrence, tumor vascularization, neurologic assessment in neuro-oncology (NANO), quality of life (QOL), median progression-free survival (PFS), 6-months PFS and overall survival (OS). Treatment was safe with no dose-limiting toxicities or treatment-related deaths. The MTD has not been reached and, thus, 600 mg per week of NOX-A12 was established as RP2D for the ongoing expansion part of the trial. With increasing NOX-A12 dose levels, a corresponding increase of NOX-A12 plasma levels was observed. Of ten patients enrolled, nine showed radiographic responses, four reached partial remission. All but one patient (90%) showed at best response reduced perfusion values in terms of relative cerebral blood volume (rCBV). The median PFS was 174 (range 58-260) days, 6-month PFS was 40.0% and the median OS 389 (144-562) days. In a post-hoc exploratory analysis of tumor tissue, higher frequency of CXCL12+ endothelial and glioma cells was significantly associated with longer PFS under NOX-A12. Our data imply safety of NOX-A12 and its efficacy signal warrants further investigation.


Subject(s)
Aptamers, Nucleotide , Brain Neoplasms , Chemokine CXCL12 , Glioblastoma , Humans , Glioblastoma/radiotherapy , Glioblastoma/drug therapy , Aptamers, Nucleotide/administration & dosage , Chemokine CXCL12/blood , Male , Female , Middle Aged , Aged , Brain Neoplasms/radiotherapy , Brain Neoplasms/drug therapy , Adult , Maximum Tolerated Dose , Quality of Life , Neoplasm Recurrence, Local
4.
iScience ; 27(1): 108596, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38174322

ABSTRACT

Adaptive plasticity to the standard chemotherapeutic temozolomide (TMZ) leads to glioblastoma progression. Here, we examine early stages of this process in patient-derived cellular models, exposing the human lysine-specific demethylase 5B (KDM5B) as a prospective indicator for subclonal expansion. By integration of a reporter, we show its preferential activity in rare, stem-like ALDH1A1+ cells, immediately increasing expression upon TMZ exposure. Naive, genetically unmodified KDM5Bhigh cells phosphorylate AKT (pAKT) and act as slow-cycling persisters under TMZ. Knockdown of KDM5B reverses pAKT levels, simultaneously increasing PTEN expression and TMZ sensitivity. Pharmacological inhibition of PTEN rescues the effect. Interference with KDM5B subsequent to TMZ decreases cellular vitality, and clonal tracing with DNA barcoding demonstrates high individual levels of KDM5B to predict subclonal expansion already before TMZ exposure. Thus, KDM5Bhigh treatment-naive cells preferentially contribute to the dynamics of drug resistance under TMZ. These findings may serve as a cornerstone for future biomarker-assisted clinical trials.

5.
Nucl Med Commun ; 44(12): 1106-1113, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37823259

ABSTRACT

PURPOSE: To evaluate a correlation between an MRI-specific marker for cellular density [apparent diffusion coefficient (ADC)] and the expression of Somatostatin Receptors (SSTR) in patients with meningioma of the skull plane and orbital space. METHODS: 68 Ga-DOTATOC PET/MR imaging was performed in 60 Patients with suspected or diagnosed meningiomas of the skull base and eye socket. Analysis of ADC values succeeded in 32 patients. ADC values (ADC mean and ADC min ) were analyzed using a polygonal region of interest. Tracer-uptake of target lesions was assessed according to corresponding maximal (SUV max ) and mean (SUV mean ) values. Correlations between assessed parameters were evaluated using the Pearson correlation coefficient. RESULTS: One out of 32 patients (3%) was diagnosed with lymphoma by histopathological examination and therefore excluded from further analysis. Median ADC mean amounted to 822 × 10 -5  mm²/s -1 (95% CI: 570-1497) and median ADC min was 493 × 10 -5 mm 2 /s -1 (95% CI: 162-783). There were no significant correlations between SUV max and ADC min (r = 0.60; P  = 0.76) or ADC mean (r = -0.52; P  = 0.79), respectively. However, Pearson's test showed a weak, inverse but insignificant correlation between ADC mean and SUV mean (r = -0.33; P  = 0.07). CONCLUSION: The presented data displays no relevant correlations between increased SSTR expression and cellularity in patients with meningioma of the skull base. SSTR-PET and DWI thus may offer complementary information on tumor characteristics of meningioma.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/diagnostic imaging , Radiopharmaceuticals , Fluorodeoxyglucose F18 , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Meningeal Neoplasms/diagnostic imaging , Skull
6.
Neurooncol Adv ; 5(1): vdad105, 2023.
Article in English | MEDLINE | ID: mdl-37811538

ABSTRACT

Background: Glioblastoma is the most aggressive primary brain cancer with a poor prognosis. Despite numerous studies in the past 17 years, effective treatment options for glioblastoma remain limited. In this study, we aimed to identify and compare phase III clinical trials for glioblastoma in terms of efficacy and baseline characteristics. Methods: A systematic literature search was conducted using PubMed and ClinicalTrials.gov to identify phase III clinical trials for glioblastoma in adult patients. The target population included adult patients aged 18 years and above (younger cohort) and patients ≥60 years of age (elderly cohort). The search results were screened based on predefined inclusion criteria, and the included trials were analyzed for their study design, baseline characteristics, and survival results. Results: Eleven trials met the inclusion criteria in the younger cohort. Of these, three reported a statistically significant improvement in overall survival (OS), including the EORTC/NCIC study (NCT00006353), EF-14 (NCT00916409), and CeTeG (NCT01149109). Of the 11 trials, eight were open-label randomized trials, including all of the positive ones, while three negative trials employed treatment blinding and a placebo control. The baseline characteristics of the trials [such as extent of resection, age, gender, and O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status] did not significantly differ between positive and negative trials. Isocitrate dehydrogenase (IDH) mutation status was analyzed in only two trials, with a small percentage of IDH-mutated tumors in each. Additionally, three more trials in the elderly cohort showed a statistically significant improvement of OS, the NOA-08 trial, the ISRCTN81470623-trial by Malmström et al. and NCT00482677-trial by Perry et al. Their baseline characteristics and implications are also analyzed. Conclusion: This analysis of phase III clinical trials for glioblastoma conducted since 2005 showed that the majority of trials did not result in a significant improvement in OS. Among the trials included in this analysis, only the EORTC/NCIC, EF-14, and CeTeG studies demonstrated a positive OS outcome in the younger cohort.

7.
Cancers (Basel) ; 15(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37627083

ABSTRACT

In order to minimize the risk of infections during the COVID-19 pandemic, remote video consultations (VC) experienced an upswing in most medical fields. However, telemedicine in neuro-oncology comprises unique challenges and opportunities. So far, evidence-based insights to evaluate and potentially customize current concepts are scarce. To fill this gap, we analyzed >3700 neuro-oncological consultations, of which >300 were conducted as VC per patients' preference, in order to detect how both patient collectives distinguished from one another. Additionally, we examined patients' reasons, suitable/less suitable encounters, VC's benefits and disadvantages and future opportunities with an anonymized survey. Patients that participated in VC had a worse clinical condition, higher grade of malignancy, were more often diagnosed with glioblastoma and had a longer travel distance (all p < 0.01). VC were considered a fully adequate alternative to face-to-face consultations for almost all encounters that patients chose to participate in (>70%) except initial consultations. Most participants preferred to alternate between both modalities rather than participate in one alone but preferred VC over telephone consultation. VC made patients feel safer, and participants expressed interest in implementing other telemedicine modalities (e.g., apps) into neuro-oncology. VC are a promising addition to patient care in neuro-oncology. However, patients and encounters should be selected individually.

8.
Neurooncol Adv ; 5(1): vdad090, 2023.
Article in English | MEDLINE | ID: mdl-37547266

ABSTRACT

Background: Standard of care treatment options at glioblastoma relapse are still not well defined. Few studies indicate that the combination of trofosfamide plus etoposide may be feasible in pediatric glioblastoma patients. In this retrospective analysis, we determined tolerability and feasibility of combined trofosfamide plus etoposide treatment at disease recurrence of adult glioblastoma patients. Methods: We collected clinicopathological data from adult progressive glioblastoma patients treated with the combination of trofosfamide and etoposide for more than four weeks (one course). A cohort of patients receiving empiric treatment at the investigators' discretion balanced for tumor entity and canonical prognostic factors served as control. Results: A total of n = 22 progressive glioblastoma patients were eligible for this analysis. Median progression-free survival (3.1 vs 2.3 months, HR: 1.961, 95% CI: 0.9724-3.9560, P = .0274) and median overall survival (9.0 vs 5.7 months, HR: 4.687, 95% CI: 2.034-10.800, P = .0003) were significantly prolonged compared to the control cohort (n = 17). In a multivariable Cox regression analysis, treatment with trofosfamide plus etoposide emerged as a significant prognostic marker regarding progression-free and overall survival. We observed high-grade adverse events in n = 16/22 (73%) patients with hematotoxicity comprising the majority of adverse events (n = 15/16, 94%). Lymphopenia was by far the most commonly observed hematotoxic adverse event (n = 11/15, 73%). Conclusions: This study provides first indication that the combination of trofosfamide plus etoposide is safe in adult glioblastoma patients. The observed survival outcomes might suggest potential beneficial effects. Our data provide a reasonable rationale for follow-up of a larger cohort in a prospective trial.

9.
Clin Cancer Res ; 29(2): 488-500, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36239995

ABSTRACT

PURPOSE: Therapy resistance and fatal disease progression in glioblastoma are thought to result from the dynamics of intra-tumor heterogeneity. This study aimed at identifying and molecularly targeting tumor cells that can survive, adapt, and subclonally expand under primary therapy. EXPERIMENTAL DESIGN: To identify candidate markers and to experimentally access dynamics of subclonal progression in glioblastoma, we established a discovery cohort of paired vital cell samples obtained before and after primary therapy. We further used two independent validation cohorts of paired clinical tissues to test our findings. Follow-up preclinical treatment strategies were evaluated in patient-derived xenografts. RESULTS: We describe, in clinical samples, an archetype of rare ALDH1A1+ tumor cells that enrich and acquire AKT-mediated drug resistance in response to standard-of-care temozolomide (TMZ). Importantly, we observe that drug resistance of ALDH1A1+ cells is not intrinsic, but rather an adaptive mechanism emerging exclusively after TMZ treatment. In patient cells and xenograft models of disease, we recapitulate the enrichment of ALDH1A1+ cells under the influence of TMZ. We demonstrate that their subclonal progression is AKT-driven and can be interfered with by well-timed sequential rather than simultaneous antitumor combination strategy. CONCLUSIONS: Drug-resistant ALDH1A1+/pAKT+ subclones accumulate in patient tissues upon adaptation to TMZ therapy. These subclones may therefore represent a dynamic target in glioblastoma. Our study proposes the combination of TMZ and AKT inhibitors in a sequential treatment schedule as a rationale for future clinical investigation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Proto-Oncogene Proteins c-akt , Drug Resistance, Neoplasm/genetics , Temozolomide , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
10.
J Cancer Res Clin Oncol ; 149(7): 3513-3526, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35953681

ABSTRACT

PURPOSE: When brain cancer relapses, treatment options are scarce. The use of molecularly matched targeted therapies may provide a feasible and efficacious way to treat individual patients based on the molecular tumor profile. Since little information is available on this strategy in neuro-oncology, we retrospectively analyzed the clinical course of 41 patients who underwent advanced molecular testing at disease relapse. METHODS: We performed Sanger sequencing, targeted next generation sequencing, and immunohistochemistry for analysis of potential targets, including programmed death ligand 1, cyclin D1, phosphorylated mechanistic target of rapamycin, telomerase reverse transcriptase promoter mutation, cyclin-dependent kinase inhibitor 2A/B deletion, or BRAF-V600E mutation. In selected patients, whole exome sequencing was conducted. RESULTS: The investigation included 41 patients, of whom 32 had isocitrate dehydrogenase (IDH) wildtype glioblastoma. Molecular analysis revealed actionable targets in 31 of 41 tested patients and 18 patients were treated accordingly (matched therapy group). Twenty-three patients received molecularly unmatched empiric treatment (unmatched therapy group). In both groups, 16 patients were diagnosed with recurrent IDH wildtype glioblastoma. The number of severe adverse events was comparable between the therapy groups. Regarding the IDH wildtype glioblastoma patients, median progression-free survival (mPFS) and median overall survival (mOS) were longer in the matched therapy group (mPFS: 3.8 versus 2.0 months, p = 0.0057; mOS: 13.0 versus 4.3 months, p = 0.0357). CONCLUSION: These encouraging data provide a rationale for molecularly matched targeted therapy in glioma patients. For further validation, future study designs need to additionally consider the prevalence and persistence of actionable molecular alterations in patient tissue.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/pathology , Retrospective Studies , Precision Medicine , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Glioma/drug therapy , Glioma/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Mutation , Isocitrate Dehydrogenase/genetics
11.
Neurooncol Adv ; 4(1): vdac137, 2022.
Article in English | MEDLINE | ID: mdl-36284931

ABSTRACT

Background: The randomized phase 3 CeTeG/NOA-09 trial assessed whether CCNU plus temozolomide was superior to temozolomide alone in newly diagnosed MGMT promoter methylated glioblastoma patients. Survival was significantly improved from 31.4 months (temozolomide) to 48.1 months (CCNU plus temozolomide). In view of this encouraging data, we assessed safety and efficacy of this regimen under real-life conditions. Methods: We retrospectively collected clinical and radiographic data from adult newly diagnosed MGMT promoter methylated IDH wildtype glioblastoma patients from five neuro-oncology centers in Germany. For inclusion in our analysis, treatment with CCNU and temozolomide had to be performed for at least six weeks (one course). Results: Seventy patients were included. Median progression-free survival was 14.4 months and median overall survival 33.8 months. Patients with TTFields treatment for at least 8 weeks and CCNU plus temozolomide (n = 22, 31%) had a prolonged progression-free survival compared to those with TTFields treatment for less than eight weeks (n = 48, 69%) (21.5 versus 11.2 months; P = .0105). In a multivariable Cox regression analysis, TTFields treatment for eight weeks or longer together with CCNU plus temozolomide and a Karnofsky performance score ≥ 90% were independent prognostic factors for progression-free and overall survival. Pseudoprogression occurred in n = 16 (33%) of investigated n = 49 (70%) patients. In n = 31 (44%) patients high-grade hematotoxicity was observed. Conclusions: The results from this multicentric trial indicate that-under real-life conditions-toxicity and survival estimates are comparable to the CeTeG/NOA-09 trial. TTFields therapy for at least eight weeks in combination with this regimen was independently associated with prolonged survival.

13.
Transl Stroke Res ; 13(3): 382-390, 2022 06.
Article in English | MEDLINE | ID: mdl-34599427

ABSTRACT

We hypothesized that the enzyme arginase-1 is released into the cerebrospinal fluid (CSF) during red blood cell lysis and contributes to dysregulated metabolism of the nitric oxide (NO) precursor L-arginine during aneurysmal subarachnoid hemorrhage (SAH). This prospective case-control study included 43 patients with aneurysmal SAH and ventricular drainage for clinical reasons. Longitudinal CSF samples (99) were obtained in the course of SAH. Patients were dichotomized regarding the occurrence of cerebral vasospasm syndrome (CVS) (N = 19). Arginase-1 and the amino acids L-arginine and L-ornithine were quantified in CSF. Outcome assessments included delayed cerebral ischemia (DCI) and functional status after 3 months using the modified Rankin Scale (mRS). Arginase-1 was released into the CSF of SAH patients whereas this enzyme was undetectable in controls. Compared to patients without CVS, arginase-1 levels were higher in CVS patients until day 14 after clinical event. The well-known surrogate parameter for arginase acitivity, the L-arginine to L-ornithine ratio (Arg/Orn), correlated with CSF arginase-1 levels. Arg/Orn was reduced in patients with CVS from disease onset (days 1-3, p = 0.0009) until day 14. Logistic regression analysis of early Arg/Orn was predictive for CVS (p = 0.008) and DCI (p = 0.035), independent of age, Hunt and Hess grade, and intraventricular blood. Arg/Orn < 2.71 at disease onset predicted CVS with a sensitivity of 86.7% and specificity of 72.2%. Arg/Orn ≥ 2.71 predicted excellent functional outcome. We propose a novel mechanism contributing to NO deprivation during SAH: arginase-1 is released from erythrocytes into the CSF, leading to L-arginine consumption and reduced NO bioavailability. Furthermore, Arg/Orn is a robust predictor for occurrence of CVS, DCI, and functional outcome 3 months after aneurysmal SAH. Our data provide a novel prognostic biomarker and may contribute to the development of novel therapeutic strategies in SAH. Clinical Trial Registration-URL: http://www.drks.de . Unique identifier: DRKS00015293, date of registration: 13.09.2018.


Subject(s)
Brain Ischemia , Subarachnoid Hemorrhage , Vasospasm, Intracranial , Arginase , Arginine , Biomarkers , Case-Control Studies , Cerebral Infarction , Humans , Nitric Oxide , Ornithine/therapeutic use , Prognosis , Subarachnoid Hemorrhage/cerebrospinal fluid , Vasospasm, Intracranial/etiology
14.
Future Oncol ; 17(34): 4711-4719, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34672208

ABSTRACT

Purpose: Disturbances of electrolytes and renal function have been linked to the prognosis of critically ill patients and recently also of cancer patients. This study aimed to assess electrolyte and renal disorders in glioblastoma patients and evaluate their prognostic effect. Methods: Medical records of patients with newly diagnosed glioblastoma between 2005 and 2018 were retrospectively reviewed for electrolyte and renal function parameters and for demographic, clinical and outcome parameters. Results: Electrolyte and renal function disorders were associated with poorer survival in univariate and Kaplan-Meier analysis. Multivariate analysis revealed hypochloremia as an independent prognostic factor for overall and 1-year survival. Conclusion: Only hypochloremia showed an association with glioblastoma prognosis, independent of other known prognostic factors, as age or molecular status.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Renal Insufficiency/epidemiology , Water-Electrolyte Imbalance/epidemiology , Aged , Brain Neoplasms/complications , Brain Neoplasms/mortality , Chemoradiotherapy, Adjuvant/adverse effects , Chemoradiotherapy, Adjuvant/methods , Female , Glioblastoma/complications , Glioblastoma/mortality , Glomerular Filtration Rate , Humans , Kaplan-Meier Estimate , Longitudinal Studies , Male , Middle Aged , Prognosis , Renal Insufficiency/diagnosis , Renal Insufficiency/etiology , Retrospective Studies , Water-Electrolyte Imbalance/diagnosis , Water-Electrolyte Imbalance/etiology
15.
Cancers (Basel) ; 13(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34359673

ABSTRACT

Despite multimodal treatment, the prognosis of patients with glioblastoma (GBM) remains poor. Previous studies showed conflicting results on the effect of antiepileptic drugs (AED) on GBM survival. We investigated the associations of different AED with overall survival (OS) and progression-free survival (PFS) in a large institutional GBM cohort (n = 872) treated January 2006 and December 2018. In addition, we performed a meta-analysis of previously published studies, including this study, to summarize the evidence on the value of AED for GBM prognosis. Of all perioperatively administered AED, only the use of levetiracetam (LEV) was associated with longer OS (median: 12.8 vs. 8.77 months, p < 0.0001) and PFS (7 vs. 4.5 months, p = 0.001). In the multivariable analysis, LEV was independently associated with longer OS (aHR = 0.74, p = 0.017) and PFS (aHR = 0.68, p = 0.008). In the meta-analysis with 5614 patients from the present and seven previously published studies, outcome benefit for OS (HR = 0.83, p = 0.02) and PFS (HR = 0.77, p = 0.02) in GBM individuals with LEV was confirmed. Perioperative treatment with LEV might improve the prognosis of GBM patients. We recommend a prospective randomized controlled trial addressing the efficacy of LEV in GBM treatment.

16.
Nat Commun ; 12(1): 3895, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162860

ABSTRACT

Brain tumors are typically immunosuppressive and refractory to immunotherapies for reasons that remain poorly understood. The unbiased profiling of immune cell types in the tumor microenvironment may reveal immunologic networks affecting therapy and course of disease. Here we identify and validate the presence of hematopoietic stem and progenitor cells (HSPCs) within glioblastoma tissues. Furthermore, we demonstrate a positive link of tumor-associated HSPCs with malignant and immunosuppressive phenotypes. Compared to the medullary hematopoietic compartment, tumor-associated HSPCs contain a higher fraction of immunophenotypically and transcriptomically immature, CD38- cells, such as hematopoietic stem cells and multipotent progenitors, express genes related to glioblastoma progression and display signatures of active cell cycle phases. When cultured ex vivo, tumor-associated HSPCs form myeloid colonies, suggesting potential in situ myelopoiesis. In experimental models, HSPCs promote tumor cell proliferation, expression of the immune checkpoint PD-L1 and secretion of tumor promoting cytokines such as IL-6, IL-8 and CCL2, indicating concomitant support of both malignancy and immunosuppression. In patients, the amount of tumor-associated HSPCs in tumor tissues is prognostic for patient survival and correlates with immunosuppressive phenotypes. These findings identify an important element in the complex landscape of glioblastoma that may serve as a target for brain tumor immunotherapies.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , Hematopoietic Stem Cells/metabolism , Neoplastic Stem Cells/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cells, Cultured , Disease Progression , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Kaplan-Meier Estimate , RNA-Seq/methods , Signal Transduction/genetics , Single-Cell Analysis/methods , Tumor Microenvironment/genetics
17.
Front Oncol ; 11: 637185, 2021.
Article in English | MEDLINE | ID: mdl-33937037

ABSTRACT

Immune checkpoint inhibitors (ICIs) have considerably expanded the effective treatment options for malignant melanoma. ICIs revert tumor-associated immunosuppression and potentiate T-cell mediated tumor clearance. Immune-related neurologic adverse events (irNAEs) manifest in the central (CNS) or peripheral nervous system (PNS) and most frequently present as encephalitis or myasthenia gravis respectively. We report on a 47-year old male patient with metastatic melanoma who developed signs of cerebellar disease five weeks after the start of ICI treatment (ipilimumab and nivolumab). Magnetic resonance imaging (MRI) of the brain and spine revealed multiple new contrast enhancements suggestive of parenchymal and leptomeningeal metastasis. Cerebral spinal fluid (CSF) evaluation showed a lymphomononuclear pleocytosis in the absence of tumor cells. Subsequent stereotactic brain biopsy confirmed demyelinating disease. High-dose corticosteroid treatment resulted in immediate improvement of the clinical symptoms. MRI scans and CSF re-evaluation were conducted six weeks later and showed a near-complete remission. The strong resemblance to neoplastic CNS dissemination and irNAEs is a particularly difficult diagnostic challenge. Treating physicians should be aware of irNAEs as those can be effectively treated with high-dose steroids.

18.
Eur J Cancer ; 148: 395-404, 2021 05.
Article in English | MEDLINE | ID: mdl-33789203

ABSTRACT

OBJECTIVE: The development of leptomeningeal disease (LMD) among melanoma patients is associated with short survival. Unspecific clinical symptoms and imprecise diagnostic criteria often delay diagnosis. Because melanoma patients with LMD have been excluded from most clinical trials, the efficacy of immune checkpoint blockade (ICB) and targeted therapies (TTs) has not been adequately investigated among these patients. METHODS: We performed a retrospective study in two tertiary-referral skin cancer centres to evaluate the clinical characteristics, diagnostics, treatments, and overall survival (OS) of melanoma patients with LMD between June 2011 and March 2019. RESULTS: In total, 52 patients were included. The median age at LMD diagnosis was 58 years. Most patients (n = 30, 58%) were men. The median time from the first diagnosis of unresectable disease to the first diagnosis of LMD was 8.5 months (range 0-91.5 months). Most patients (65%, n = 34) were BRAF V600 mutated. Sixteen patients (31%) presented with LMD only, whereas 36 patients (69%) presented with concomitant brain metastases at LMD diagnosis. Eleven patients (21%) showed no evidence of extracranial disease. Forty-four patients (85%) had clinical symptoms at LMD diagnosis. Forty-two patients (81%) had received at least one prior therapy. Forty patients (77%) received at least one treatment after LMD diagnosis, including TT (n = 17), ICB (n = 13), bevacizumab (n = 1), radiotherapy (n = 3), and intrathecal chemotherapy (n = 1); five patients received both TT and ICB. Twelve patients (23%) received no treatment because of rapid progression of LMD. The median OS for the entire cohort was 2.9 months (95% confidence interval [CI] 1.7-4.1). Among patients receiving systemic therapy, OS was 3.7 months (95% CI 2.4-4.9). CONCLUSIONS: Systemic treatment with TT or ICB seems to improve OS among patients with LMD. However, despite new therapy modalities, the prognosis of LMD remains poor.


Subject(s)
Brain Neoplasms/mortality , Melanoma/complications , Meningeal Neoplasms/mortality , Adult , Aged , Aged, 80 and over , Brain Neoplasms/etiology , Brain Neoplasms/pathology , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Male , Meningeal Neoplasms/etiology , Meningeal Neoplasms/pathology , Middle Aged , Prognosis , Retrospective Studies , Survival Rate
19.
J Neurooncol ; 152(2): 325-332, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33502678

ABSTRACT

INTRODUCTION: This study aimed to test the diagnostic significance of FET-PET imaging combined with machine learning for the differentiation between multiple sclerosis (MS) and glioma II°-IV°. METHODS: Our database was screened for patients in whom FET-PET imaging was performed for the diagnostic workup of newly diagnosed lesions evident on MRI and suggestive of glioma. Among those, we identified patients with histologically confirmed glioma II°-IV°, and those who later turned out to have MS. For each group, tumor-to-brain ratio (TBR) derived features of FET were determined. A support vector machine (SVM) based machine learning algorithm was constructed to enhance classification ability, and Receiver Operating Characteristic (ROC) analysis with area under the curve (AUC) metric served to ascertain model performance. RESULTS: A total of 41 patients met selection criteria, including seven patients with MS and 34 patients with glioma. TBR values were significantly higher in the glioma group (TBRmax glioma vs. MS: p = 0.002; TBRmean glioma vs. MS: p = 0.014). In a subgroup analysis, TBR values significantly differentiated between MS and glioblastoma (TBRmax glioblastoma vs. MS: p = 0.0003, TBRmean glioblastoma vs. MS: p = 0.0003) and between MS and oligodendroglioma (ODG) (TBRmax ODG vs. MS: p = 0.003; TBRmean ODG vs. MS: p = 0.01). The ability to differentiate between MS and glioma II°-IV° increased from 0.79 using standard TBR analysis to 0.94 using a SVM based machine learning algorithm. CONCLUSIONS: FET-PET imaging may help differentiate MS from glioma II°-IV° and SVM based machine learning approaches can enhance classification performance.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Machine Learning , Multiple Sclerosis/diagnostic imaging , Positron-Emission Tomography/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Radiopharmaceuticals , Tyrosine/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...