Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 5(8): 1319-1336, 2023 08.
Article in English | MEDLINE | ID: mdl-37537371

ABSTRACT

Activation of brown adipose tissue (BAT) in humans is a strategy to treat obesity and metabolic disease. Here we show that the serotonin transporter (SERT), encoded by SLC6A4, prevents serotonin-mediated suppression of human BAT function. RNA sequencing of human primary brown and white adipocytes shows that SLC6A4 is highly expressed in human, but not murine, brown adipocytes and BAT. Serotonin decreases uncoupled respiration and reduces uncoupling protein 1 via the 5-HT2B receptor. SERT inhibition by the selective serotonin reuptake inhibitor (SSRI) sertraline prevents uptake of extracellular serotonin, thereby potentiating serotonin's suppressive effect on brown adipocytes. Furthermore, we see that sertraline reduces BAT activation in healthy volunteers, and SSRI-treated patients demonstrate no 18F-fluorodeoxyglucose uptake by BAT at room temperature, unlike matched controls. Inhibition of BAT thermogenesis may contribute to SSRI-induced weight gain and metabolic dysfunction, and reducing peripheral serotonin action may be an approach to treat obesity and metabolic disease.


Subject(s)
Adipose Tissue, Brown , Metabolic Diseases , Humans , Mice , Animals , Adipose Tissue, Brown/metabolism , Serotonin/metabolism , Sertraline/metabolism , Sertraline/pharmacology , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/pharmacology , Obesity/metabolism , Thermogenesis/physiology , Metabolic Diseases/metabolism
2.
PLoS Biol ; 18(3): e3000647, 2020 03.
Article in English | MEDLINE | ID: mdl-32163403

ABSTRACT

Dendrite microtubules are polarized with minus-end-out orientation in Drosophila neurons. Nucleation sites concentrate at dendrite branch points, but how they localize is not known. Using Drosophila, we found that canonical Wnt signaling proteins regulate localization of the core nucleation protein γTubulin (γTub). Reduction of frizzleds (fz), arrow (low-density lipoprotein receptor-related protein [LRP] 5/6), dishevelled (dsh), casein kinase Iγ, G proteins, and Axin reduced γTub-green fluorescent protein (GFP) at branch points, and two functional readouts of dendritic nucleation confirmed a role for Wnt signaling proteins. Both dsh and Axin localized to branch points, with dsh upstream of Axin. Moreover, tethering Axin to mitochondria was sufficient to recruit ectopic γTub-GFP and increase microtubule dynamics in dendrites. At dendrite branch points, Axin and dsh colocalized with early endosomal marker Rab5, and new microtubule growth initiated at puncta marked with fz, dsh, Axin, and Rab5. We propose that in dendrites, canonical Wnt signaling proteins are housed on early endosomes and recruit nucleation sites to branch points.


Subject(s)
Dendrites/metabolism , Drosophila Proteins/metabolism , Endosomes/metabolism , Microtubules/metabolism , Wnt Proteins/metabolism , Animals , Axin Signaling Complex/genetics , Axin Signaling Complex/metabolism , Axons/metabolism , Cell Polarity , Dendrites/genetics , Drosophila , Drosophila Proteins/genetics , Endosomes/genetics , Microtubules/genetics , Mutation , Receptors, Wnt/genetics , Receptors, Wnt/metabolism , Tubulin/genetics , Tubulin/metabolism , Wnt Proteins/genetics , Wnt Signaling Pathway/genetics , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...