Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Chem ; 93(12): 5241-5247, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33735571

ABSTRACT

Isobaric tag-based sample multiplexing strategies are extensively used for global protein abundance profiling. However, such analyses are often confounded by ratio compression resulting from the co-isolation, co-fragmentation, and co-quantification of co-eluting peptides, termed "interference." Recent analytical strategies incorporating ion mobility and real-time database searching have helped to alleviate interference, yet further assessment is needed. Here, we present the strain-specific peptide (SSP) interference reference sample, a tandem mass tag (TMT)pro-labeled quality control that leverages the genetic variation in the proteomes of eight phylogenetically divergent mouse strains. Typically, a peptide with a missense mutation has a different mass and retention time than the reference or native peptide. TMT reporter ion signal for the native peptide in strains that encode the mutant peptide suggests interference which can be quantified and assessed using the interference-free index (IFI). We introduce the SSP by investigating interference in three common data acquisition methods and by showcasing improvements in the IFI when using ion mobility-based gas-phase fractionation. In addition, we provide a user-friendly, online viewer to visualize the data and streamline the calculation of the IFI. The SSP will aid in developing and optimizing isobaric tag-based experiments.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Animals , Mice , Peptides , Proteome , Quality Control
2.
Article in English | MEDLINE | ID: mdl-24790730

ABSTRACT

BACKGROUND: Germline apoptosis-related single nucleotide polymorphisms (SNPs) have been shown to contribute to the risk of developing non-small cell lung cancer (NSCLC). However, very few studies have looked specifically at apoptosis-related SNPs in a racially-stratified analysis of white and African-American women. METHODS: We examined the risk of developing NSCLC associated with 98 germline SNPs in 32 apoptosis-related genes among women in a population-based case-control study from the Detroit metropolitan area. We examined 453 cases of NSCLC and 478 control subjects. We used an unconditional logistic regression with a dominant model, stratified by race, and adjusted for age, pack-years smoked, ever/never smoking status, family history of lung cancer, history of COPD, BMI and education. RESULTS: Our logistic regression identified 3 significant apoptosis-related SNPs in whites (APAF-1, rs1007573; CD40 rs3765459, and CD40 rs1535045), and 7 significant SNPs (ATM, rs1801516; BAK1, rs513349; TNF, rs1800629; TP63, rs6790167; TP63, rs7613791, TP63, rs35592567 and TP63, rs3856775) in African-Americans. In a downstream analysis, these SNPs were further prioritized utilizing the False Positive Report Percentage (FPRP) methodology and backwards elimination. In whites, APAF-1 (rs1007573), CD40 (rs3765459) and CD40 (rs1535045) were all found to be significant by FPRP. In African-Americans, TP63 SNPs rs6790167 and rs7613791 were found to have a significant FPRP. In parallel, a backward elimination procedure was used on the 3 significant SNPs in whites and 7 significant SNPs in African-Americans. This procedure identified APAF-1 rs1007573 (OR=1.86, 95% CI: 1.17-2.95) and CD40 rs1535045 (OR=0.58, 95% CI: 0.40-0.84) as significant independent predictors of risk among whites, and ATM rs1801516 (OR=24.15, 95% CI: 3.50-166.55), TNF rs1800629 (OR= 0.42, 95% CI: 0.18-0.99) and TP63 rs6790167 (OR: 2.85, 95% CI: 1.33-6.09) as significant, independent predictors in African-Americans. CONCLUSION: In whites, only SNPs APAF-1 rs1007573 and CD40 rs1535045 were significant by both FPRP and backwards elimination, while in African-Americans, only TP63 rs6790167 was significant by both methodologies. Thus, we have identified three promising variants associated with increased risk of NSCLC that warrant additional investigation in future studies.

3.
Environ Health ; 11: 43, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22747749

ABSTRACT

BACKGROUND: Ingestion of groundwater with high concentrations of inorganic arsenic has been linked to adverse health outcomes, including bladder cancer, however studies have not consistently observed any elevation in risk at lower concentrations. Genetic variability in the metabolism and clearance of arsenic is an important consideration in any investigation of its potential health risks. Therefore, we examined the association between genes thought to play a role in the metabolism of arsenic and bladder cancer. METHODS: Single nucleotide polymorphisms (SNPs) in GSTO-1, As3MT and MTHFR were genotyped using DNA from 219 bladder cancer cases and 273 controls participating in a case-control study in Southeastern Michigan and exposed to low to moderate (<50 µg/L) levels of arsenic in their drinking water. A time-weighted measure of arsenic exposure was constructed using measures from household water samples combined with past residential history, geocoded and merged with archived arsenic data predicted from multiple resources. RESULTS: While no single SNP in As3MT was significantly associated with bladder cancer overall, several SNPs were associated with bladder cancer among those exposed to higher arsenic levels. Individuals with one or more copies of the C allele in rs11191439 (the Met287Thr polymorphism) had an elevated risk of bladder cancer (OR = 1.17; 95% CI = 1.04-1.32 per 1 µg/L increase in average exposure). However, no association was observed between average arsenic exposure and bladder cancer among TT homozygotes in the same SNP. Bladder cancer cases were also 60% less likely to be homozygotes for the A allele in rs1476413 in MTHFR compared to controls (OR = 0.40; 95% CI = 0.18-0.88). CONCLUSIONS: Variation in As3MT and MTHFR is associated with bladder cancer among those exposed to relatively low concentrations of inorganic arsenic. Further investigation is warranted to confirm these findings.


Subject(s)
Arsenic/toxicity , Environmental Exposure , Glutathione Transferase/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methyltransferases/genetics , Polymorphism, Single Nucleotide , Urinary Bladder Neoplasms/genetics , Aged , Arsenic/metabolism , Case-Control Studies , Drinking Water/analysis , Female , Genetic Predisposition to Disease/epidemiology , Genotype , Homozygote , Humans , Male , Michigan/epidemiology , Middle Aged , Pilot Projects , Polymerase Chain Reaction , Risk Assessment , Urinary Bladder Neoplasms/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL