Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L726-L740, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37847710

ABSTRACT

Common respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Previous studies indicated a role for mitogen-activated protein kinase 14 (MAPK14) in this type of disease, but clinical trials are unsuccessful to date. Our previous work identified a related but distinct kinase known as MAPK13 that is activated in respiratory airway diseases and is required for mucus production in human cell-culture models. Support for MAPK13 function in these models came from effectiveness of MAPK13 versus MAPK14 gene-knockdown and from first-generation MAPK13-14 inhibitors. However, these first-generation inhibitors were incompletely optimized for blocking activity and were untested in vivo. Here we report the next generation and selection of a potent MAPK13-14 inhibitor (designated NuP-3) that more effectively downregulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment prevents respiratory airway inflammation and mucus production in new minipig models of airway disease triggered by type-2 cytokine challenge or respiratory viral infection. The results thereby provide the next advance in developing a small-molecule kinase inhibitor to address key features of respiratory disease.NEW & NOTEWORTHY This study describes the discovery of a potent mitogen-activated protein kinase 13-14 (MAPK13-14) inhibitor and its effectiveness in models of respiratory airway disease. The findings thereby provide a scheme for pathogenesis and therapy of lung diseases [e.g., asthma, chronic obstructive pulmonary disease (COPD), Covid-19, postviral, and allergic respiratory disease] and related conditions that implicate MAPK13-14 function. The findings also refine a hypothesis for epithelial and immune cell functions in respiratory disease that features MAPK13 as a possible component of this disease process.


Subject(s)
Mitogen-Activated Protein Kinase 14 , Pulmonary Disease, Chronic Obstructive , Animals , Humans , Swine , Mitogen-Activated Protein Kinase 14/metabolism , Swine, Miniature/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Mucus/metabolism , Cytokines/metabolism , Mitogen-Activated Protein Kinase 13/metabolism
2.
bioRxiv ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37292761

ABSTRACT

Common respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Previous studies indicated a role for mitogen-activated protein kinase 14 (MAPK14) in this type of disease, but clinical trials are unsuccessful to date. Our previous work identified a related but distinct kinase known as MAPK13 that is activated in respiratory airway diseases and is required for mucus production in human cell-culture models. Support for MAPK13 function in these models came from effectiveness of MAPK13 versus MAPK14 gene-knockdown and from first-generation MAPK13-14 inhibitors. However, these first-generation inhibitors were incompletely optimized for blocking activity and were untested in vivo. Here we report the next generation and selection of a potent MAPK13-14 inhibitor (designated NuP-3) that more effectively down-regulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment prevents respiratory airway inflammation and mucus production in new minipig models of airway disease triggered by type-2 cytokine challenge or respiratory viral infection. The results thereby provide the next advance in developing a small-molecule kinase inhibitor to address key features of respiratory disease.

3.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L870-L878, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37130808

ABSTRACT

Chronic lung disease is often accompanied by disabling extrapulmonary symptoms, notably skeletal muscle dysfunction and atrophy. Moreover, the severity of respiratory symptoms correlates with decreased muscle mass and in turn lowered physical activity and survival rates. Previous models of muscle atrophy in chronic lung disease often modeled chronic obstructive pulmonary disease (COPD) and relied on cigarette smoke exposure and LPS stimulation, but these conditions independently affect skeletal muscle even without accompanying lung disease. Moreover, there is an emerging and pressing need to understand the extrapulmonary manifestations of long-term post-viral lung disease (PVLD) as found in COVID-19. Here, we examine the development of skeletal muscle dysfunction in the setting of chronic pulmonary disease caused by infection due to the natural pathogen Sendai virus using a mouse model of PVLD. We identify a significant decrease in myofiber size when PVLD is maximal at 49 days after infection. We find no change in the relative types of myofibers, but the greatest decrease in fiber size is localized to fast-twitch-type IIB myofibers based on myosin heavy chain immunostaining. Remarkably, all biomarkers of myocyte protein synthesis and degradation (total RNA, ribosomal abundance, and ubiquitin-proteasome expression) were stable throughout the acute infectious illness and chronic post-viral disease process. Together, the results demonstrate a distinct pattern of skeletal muscle dysfunction in a mouse model of long-term PVLD. The findings thereby provide new insights into prolonged limitations in exercise capacity in patients with chronic lung disease after viral infections and perhaps other types of lung injury.NEW & NOTEWORTHY Our study used a mouse model of post-viral lung disease to study the impact of chronic lung disease on skeletal muscle. The model reveals a decrease in myofiber size that is selective for specific types of myofibers and an alternative mechanism for muscle atrophy that might be independent of the usual markers of protein synthesis and degradation. The findings provide a basis for new therapeutic strategies to correct skeletal muscle dysfunction in chronic respiratory disease.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , COVID-19/pathology , Muscle, Skeletal/metabolism , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/metabolism
4.
bioRxiv ; 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36238722

ABSTRACT

Chronic lung disease is often accompanied by disabling extrapulmonary symptoms, notably skeletal muscle dysfunction and atrophy. Moreover, the severity of respiratory symptoms correlates with decreased muscle mass and in turn lowered physical activity and survival rates. Previous models of muscle atrophy in chronic lung disease often modeled COPD and relied on cigarette smoke exposure and LPS-stimulation, but these conditions independently affect skeletal muscle even without accompanying lung disease. Moreover, there is an emerging and pressing need to understand the extrapulmonary manifestations of long-term post-viral lung disease (PVLD) as found in Covid-19. Here, we examine the development of skeletal muscle dysfunction in the setting of chronic pulmonary disease using a mouse model of PVLD caused by infection due to the natural pathogen Sendai virus. We identify a significant decrease in myofiber size when PVLD is maximal at 49 d after infection. We find no change in the relative types of myofibers, but the greatest decrease in fiber size is localized to fast-twitch type IIB myofibers based on myosin heavy chain immunostaining. Remarkably, all biomarkers of myocyte protein synthesis and degradation (total RNA, ribosomal abundance, and ubiquitin-proteasome expression) were stable throughout the acute infectious illness and chronic post-viral disease process. Together, the results demonstrate a distinct pattern of skeletal muscle dysfunction in a mouse model of long-term PVLD. The findings thereby provide new insight into prolonged limitations in exercise capacity in patients with chronic lung disease after viral infections and perhaps other types of lung injury.

5.
Cell Rep ; 39(6): 110799, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35523172

ABSTRACT

Although vaccines and monoclonal antibody countermeasures have reduced the morbidity and mortality associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, variants with constellations of mutations in the spike gene jeopardize their efficacy. Accordingly, antiviral interventions that are resistant to further virus evolution are needed. The host-derived cytokine interferon lambda (IFN-λ) has been proposed as a possible treatment based on studies in human coronavirus 2019 (COVID-19) patients. Here, we show that IFN-λ protects against SARS-CoV-2 B.1.351 (Beta) and B.1.1.529 (Omicron) variants in three strains of conventional and human ACE2 transgenic mice. Prophylaxis or therapy with nasally delivered IFN-λ2 limits infection of historical or variant SARS-CoV-2 strains in the upper and lower respiratory tracts without causing excessive inflammation. In the lung, IFN-λ is produced preferentially in epithelial cells and acts on radio-resistant cells to protect against SARS-CoV-2 infection. Thus, inhaled IFN-λ may have promise as a treatment for evolving SARS-CoV-2 variants that develop resistance to antibody-based countermeasures.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Humans , Interferons , Mice , Mice, Transgenic
6.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L842-L852, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35438004

ABSTRACT

Morbidity and mortality of respiratory diseases are linked to airway obstruction by mucus but there are still no specific, safe, and effective drugs to correct this phenotype. The need for better treatment requires a new understanding of the basis for mucus production. In that regard, studies of human airway epithelial cells in primary culture show that a mucin granule constituent known as chloride channel accessory 1 (CLCA1) is required for inducible expression of the inflammatory mucin MUC5AC in response to potent type 2 cytokines. However, it remained uncertain whether CLCLA1 is necessary for mucus production in vivo. Conventional approaches to functional biology using targeted gene knockout were difficult due to the functional redundancy of additional Clca genes in mice not found in humans. We reasoned that CLCA1 function might be better addressed in pigs that maintain the same four-member CLCA gene locus and the corresponding mucosal and submucosal populations of mucous cells found in humans. Here we develop to our knowledge the first CLCA1-gene-deficient (CLCA1-/-) pig and show that these animals exhibit loss of MUC5AC+ mucous cells throughout the airway mucosa of the lung without affecting comparable cells in the tracheal mucosa or MUC5B+ mucous cells in submucosal glands. Similarly, CLCA1-/- pigs exhibit loss of MUC5AC+ mucous cells in the intestinal mucosa without affecting MUC2+ mucous cells. These data establish CLCA1 function for controlling MUC5AC expression as a marker of mucus production and provide a new animal model to study mucus production at respiratory and intestinal sites.


Subject(s)
Chloride Channels , Mucin 5AC , Animals , Chloride Channels/genetics , Chloride Channels/metabolism , Epithelial Cells/metabolism , Goblet Cells/metabolism , Lung/metabolism , Mice , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucus/metabolism , Respiratory Mucosa/metabolism , Swine
7.
J Immunol ; 208(6): 1467-1482, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35173037

ABSTRACT

Asthma is a chronic disease of childhood, but for unknown reasons, disease activity sometimes subsides as children mature. In this study, we present clinical and animal model evidence suggesting that the age dependency of childhood asthma stems from an evolving host response to respiratory viral infection. Using clinical data, we show that societal suppression of respiratory virus transmission during coronavirus disease 2019 lockdown disrupted the traditional age gradient in pediatric asthma exacerbations, connecting the phenomenon of asthma remission to virus exposure. In mice, we show that asthmatic lung pathology triggered by Sendai virus (SeV) or influenza A virus is highly age-sensitive: robust in juvenile mice (4-6 wk old) but attenuated in mature mice (>3 mo old). Interestingly, allergen induction of the same asthmatic traits was less dependent on chronological age than viruses. Age-specific responses to SeV included a juvenile bias toward type 2 airway inflammation that emerged early in infection, whereas mature mice exhibited a more restricted bronchiolar distribution of infection that produced a distinct type 2 low inflammatory cytokine profile. In the basal state, aging produced changes to lung leukocyte burden, including the number and transcriptional landscape of alveolar macrophages (AMs). Importantly, depleting AMs in mature mice restored post-SeV pathology to juvenile levels. Thus, aging influences chronic outcomes of respiratory viral infection through regulation of the AM compartment and type 2 inflammatory responses to viruses. Our data provide insight into how asthma remission might develop in children.


Subject(s)
Age Factors , Aging/physiology , Asthma/immunology , COVID-19/immunology , Influenza A virus/physiology , Influenza, Human/immunology , Lung/immunology , Orthomyxoviridae Infections/immunology , Respirovirus Infections/immunology , SARS-CoV-2/physiology , Sendai virus/physiology , Th2 Cells/immunology , Animals , Asthma/epidemiology , COVID-19/epidemiology , Cytokines/metabolism , Humans , Influenza, Human/epidemiology , Mice , Mice, Inbred C57BL , United States/epidemiology
8.
J Clin Invest ; 131(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34343135

ABSTRACT

Epithelial cells are charged with protection at barrier sites, but whether this normally beneficial response might sometimes become dysfunctional still needs definition. Here, we recognized a pattern of imbalance marked by basal epithelial cell growth and differentiation that replaced normal airspaces in a mouse model of progressive postviral lung disease due to the Sendai virus. Single-cell and lineage-tracing technologies identified a distinct subset of basal epithelial stem cells (basal ESCs) that extended into gas-exchange tissue to form long-term bronchiolar-alveolar remodeling regions. Moreover, this cell subset was selectively expanded by crossing a cell-growth and survival checkpoint linked to the nuclear-localized alarmin IL-33 that was independent of IL-33 receptor signaling and instead connected to autocrine chromatin accessibility. This mechanism creates an activated stem-progenitor cell lineage with potential for physiological or pathological function. Thus, conditional loss of Il33 gene function in basal epithelial cells disrupted the homeostasis of the epithelial barrier at skin and gut sites but also markedly attenuated postviral disease in the lung based on the downregulation of remodeling and inflammation. Thus, we define a basal ESC strategy to deploy innate immune machinery that appears to overshoot the primordial goal of self-defense. Our findings reveal new targets to stratify and correct chronic and often deadly postviral disease.


Subject(s)
Alarmins/physiology , Epithelial Cells/physiology , Interleukin-33/physiology , Lung Diseases/physiopathology , Respirovirus Infections/complications , Sendai virus , Stem Cells/physiology , Animals , Cell Differentiation , Interleukin-33/genetics , Mice , Single-Cell Analysis , Stem Cells/cytology
9.
Viruses ; 13(6)2021 05 31.
Article in English | MEDLINE | ID: mdl-34072720

ABSTRACT

Identification of therapeutics against emerging and re-emerging viruses remains a continued priority that is only reinforced by the recent SARS-CoV-2 pandemic. Advances in monoclonal antibody (mAb) isolation, characterization, and production make it a viable option for rapid treatment development. While mAbs are traditionally screened and selected based on potency of neutralization in vitro, it is clear that additional factors contribute to the in vivo efficacy of a mAb beyond viral neutralization. These factors include interactions with Fc receptors (FcRs) and complement that can enhance neutralization, clearance of infected cells, opsonization of virions, and modulation of the innate and adaptive immune response. In this review, we discuss recent studies, primarily using mouse models, that identified a role for Fc-FcγR interactions for optimal antibody-based protection against emerging and re-emerging virus infections.


Subject(s)
Communicable Diseases, Emerging/immunology , Immunoglobulin Fc Fragments/immunology , Receptors, IgG/immunology , Virus Diseases/immunology , Viruses/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibody-Dependent Cell Cytotoxicity , Communicable Diseases, Emerging/therapy , Communicable Diseases, Emerging/virology , Humans , Immunization, Passive , Phagocytosis , Virus Diseases/therapy , Virus Diseases/virology , Viruses/classification
10.
J Immunol ; 206(6): 1297-1314, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33514511

ABSTRACT

Acute infection is implicated as a trigger for chronic inflammatory disease, but the full basis for this switch is uncertain. In this study, we examine this issue using a mouse model of chronic lung disease that develops after respiratory infection with a natural pathogen (Sendai virus). We investigate this model using a combination of TLR3-deficient mice and adoptive transfer of immune cells into these mice versus the comparable responses in wild-type mice. We found that acute and transient expression of TLR3 on monocyte-derived dendritic cells (moDCs) was selectively required to induce long-term expression of IL-33 and consequent type 2 immune-driven lung disease. Unexpectedly, moDC participation was not based on canonical TLR3 signaling and relied instead on a trophic effect to expand the alveolar epithelial type 2 cell population beyond repair of tissue injury and thereby provide an enriched and persistent cell source of IL-33 required for progression to a disease phenotype that includes lung inflammation, hyperreactivity, excess mucus production, and remodeling. The findings thereby provide a framework wherein viral infection activates TLR3 in moDCs as a front-line immune cell niche upstream of lung epithelial cells to drive the type 2 immune response, leading to chronic inflammatory diseases of the lung (such as asthma and chronic obstructive pulmonary disease in humans) and perhaps progressive and long-term postviral disease in general.


Subject(s)
Monocytes , Virus Diseases , Animals , Chronic Disease , Dendritic Cells , Lung , Mice , Toll-Like Receptor 3
11.
Cell ; 183(1): 169-184.e13, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32931734

ABSTRACT

The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.


Subject(s)
Coronavirus Infections/immunology , Immunogenicity, Vaccine , Pneumonia, Viral/immunology , Viral Vaccines/immunology , Adenoviridae/genetics , Administration, Intranasal , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Female , HEK293 Cells , Humans , Injections, Intramuscular , Mice , Mice, Inbred BALB C , Pandemics , Pneumonia, Viral/pathology , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Viral Vaccines/administration & dosage
13.
Vet Pathol ; 57(6): 838-844, 2020 11.
Article in English | MEDLINE | ID: mdl-32812508

ABSTRACT

Since 2002, reports of deer with swollen muzzles from throughout the United States have resulted in significant interest by wildlife biologists and wildlife enthusiasts. The condition was identified in 25 white-tailed deer (Odocoileus virginianus) and 2 mule deer (O. hemionus). Microscopic lesions consisted of severe, granulomatous or pyogranulomatous inflammation of the muzzle, nasal planum, and upper lip, as well as similar but less severe inflammation of the hard palate. Lymphadenitis of regional lymph nodes was common and granulomatous pneumonia was present in one individual. Splendore-Hoeppli material was typical in the center of inflammatory foci. Other than the single instance of pneumonia, systemic disease was not evident. Various bacterial species were isolated in culture, most of which were not morphologically consistent with the colonies of small, gram-negative bacteria observed in the center of the granulomas. Amplification and sequencing of the bacterial 16S rRNA gene from tissues of affected deer resulted in the identification of Mannheimia granulomatis. Laser capture microdissection was used to confirm that the colonies in the inflammatory foci were M. granulomatis. The cases described here are reminiscent of a bovine disease in Brazil and Argentina, locally called lechiguana. Although the inflammation of lechiguana is mostly truncal, the microscopic lesions are very similar and are also attributed to M. granulomatis. It is unclear if this is an emerging infectious disease of deer, or if it is a sporadic, uncommon condition that has only recently been recognized.


Subject(s)
Deer , Mannheimia , Animals , Cattle , Equidae , Inflammation/veterinary , Mannheimia/isolation & purification , Mannheimia/pathogenicity , RNA, Ribosomal, 16S , United States
14.
Nat Immunol ; 21(11): 1327-1335, 2020 11.
Article in English | MEDLINE | ID: mdl-32839612

ABSTRACT

Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/pathology , Immunity, Innate/immunology , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/pathology , Pneumonia/pathology , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/immunology , Disease Models, Animal , Female , Humans , Interferon Type I/immunology , Interferon-gamma/immunology , Keratin-18/genetics , Leukocytes/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Transgenic , Monocytes/immunology , NF-kappa B/immunology , Neutrophil Infiltration/immunology , Neutrophils/immunology , Pandemics , Pneumonia/genetics , Pneumonia/virology , Pneumonia, Viral/immunology , Promoter Regions, Genetic/genetics , SARS-CoV-2 , T-Lymphocytes/immunology , Vero Cells , Virus Replication/immunology
15.
Cell Host Microbe ; 28(3): 465-474.e4, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32798445

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of human infections, and an effective vaccine is critical to mitigate coronavirus-induced disease 2019 (COVID-19). Previously, we developed a replication-competent vesicular stomatitis virus (VSV) expressing a modified form of the SARS-CoV-2 spike gene in place of the native glycoprotein gene (VSV-eGFP-SARS-CoV-2). Here, we show that vaccination with VSV-eGFP-SARS-CoV-2 generates neutralizing immune responses and protects mice from SARS-CoV-2. Immunization of mice with VSV-eGFP-SARS-CoV-2 elicits high antibody titers that neutralize SARS-CoV-2 and target the receptor binding domain that engages human angiotensin-converting enzyme-2 (ACE2). Upon challenge with a human isolate of SARS-CoV-2, mice that expressed human ACE2 and were immunized with VSV-eGFP-SARS-CoV-2 show profoundly reduced viral infection and inflammation in the lung, indicating protection against pneumonia. Passive transfer of sera from VSV-eGFP-SARS-CoV-2-immunized animals also protects naive mice from SARS-CoV-2 challenge. These data support development of VSV-SARS-CoV-2 as an attenuated, replication-competent vaccine against SARS-CoV-2.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Vesicular stomatitis Indiana virus/genetics , Viral Vaccines/genetics , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Models, Animal , Genetic Vectors , Green Fluorescent Proteins/genetics , Host Microbial Interactions/immunology , Humans , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, Virus/genetics , SARS-CoV-2 , Translational Research, Biomedical , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/pharmacology , Vero Cells , Vesicular stomatitis Indiana virus/immunology , Viral Vaccines/immunology , Viral Vaccines/pharmacology
16.
bioRxiv ; 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32676597

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of human infections and hundreds of thousands of deaths. Accordingly, an effective vaccine is of critical importance in mitigating coronavirus induced disease 2019 (COVID-19) and curtailing the pandemic. We developed a replication-competent vesicular stomatitis virus (VSV)-based vaccine by introducing a modified form of the SARS-CoV-2 spike gene in place of the native glycoprotein gene (VSV-eGFP-SARS-CoV-2). Immunization of mice with VSV-eGFP-SARS-CoV-2 elicits high titers of antibodies that neutralize SARS-CoV-2 infection and target the receptor binding domain that engages human angiotensin converting enzyme-2 (ACE2). Upon challenge with a human isolate of SARS-CoV-2, mice expressing human ACE2 and immunized with VSV-eGFP-SARS-CoV-2 show profoundly reduced viral infection and inflammation in the lung indicating protection against pneumonia. Finally, passive transfer of sera from VSV-eGFP-SARS-CoV-2-immunized animals protects naïve mice from SARS-CoV-2 challenge. These data support development of VSV-eGFP-SARS-CoV-2 as an attenuated, replication-competent vaccine against SARS-CoV-2.

17.
bioRxiv ; 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32676600

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) emerged in late 2019 and has spread worldwide resulting in the Coronavirus Disease 2019 (COVID-19) pandemic. Although animal models have been evaluated for SARS-CoV-2 infection, none have recapitulated the severe lung disease phenotypes seen in hospitalized human cases. Here, we evaluate heterozygous transgenic mice expressing the human ACE2 receptor driven by the epithelial cell cytokeratin-18 gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lung tissues with additional spread to other organs. Remarkably, a decline in pulmonary function, as measured by static and dynamic tests of respiratory capacity, occurs 4 days after peak viral titer and correlates with an inflammatory response marked by infiltration into the lung of monocytes, neutrophils, and activated T cells resulting in pneumonia. Cytokine profiling and RNA sequencing analysis of SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with prominent signatures of NF-kB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection recapitulates many features of severe COVID-19 infection in humans and can be used to define the mechanistic basis of lung disease and test immune and antiviral-based countermeasures.

18.
Nature ; 584(7821): 443-449, 2020 08.
Article in English | MEDLINE | ID: mdl-32668443

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health1 and the medical countermeasures available so far are limited2,3. Moreover, we currently lack a thorough understanding of the mechanisms of humoral immunity to SARS-CoV-24. Here we analyse a large panel of human monoclonal antibodies that target the spike (S) glycoprotein5, and identify several that exhibit potent neutralizing activity and fully block the receptor-binding domain of the S protein (SRBD) from interacting with human angiotensin-converting enzyme 2 (ACE2). Using competition-binding, structural and functional studies, we show that the monoclonal antibodies can be clustered into classes that recognize distinct epitopes on the SRBD, as well as distinct conformational states of the S trimer. Two potently neutralizing monoclonal antibodies, COV2-2196 and COV2-2130, which recognize non-overlapping sites, bound simultaneously to the S protein and neutralized wild-type SARS-CoV-2 virus in a synergistic manner. In two mouse models of SARS-CoV-2 infection, passive transfer of COV2-2196, COV2-2130 or a combination of both of these antibodies protected mice from weight loss and reduced the viral burden and levels of inflammation in the lungs. In addition, passive transfer of either of two of the most potent ACE2-blocking monoclonal antibodies (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on the SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic agents.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Betacoronavirus/chemistry , Binding, Competitive , COVID-19 , Cell Line , Cross Reactions , Disease Models, Animal , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Female , Humans , Macaca mulatta , Male , Mice , Middle Aged , Neutralization Tests , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pre-Exposure Prophylaxis , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
19.
J Immunol ; 205(4): 1084-1101, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32641386

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are implicated in host defense and inflammatory disease, but these potential functional roles need more precise definition, particularly using advanced technologies to better target ILC2s and engaging experimental models that better manifest both acute infection and chronic, even lifelong, disease. In this study, we use a mouse model that applies an improved genetic definition of ILC2s via IL-7r-conditional Rora gene targeting and takes advantage of a distinct progression from acute illness to chronic disease, based on a persistent type 2 immune response to respiratory infection with a natural pathogen (Sendai virus). We first show that ILC2s are activated but are not required to handle acute illness after respiratory viral infection. In contrast, we find that this type of infection also activates ILC2s chronically for IL-13 production and consequent asthma-like disease traits that peak and last long after active viral infection is cleared. However, to manifest this type of disease, the Csf1-dependent myeloid-macrophage lineage is also active at two levels: first, at a downstream level, this lineage provides lung tissue macrophages (interstitial macrophages and tissue monocytes) that represent a major site of Il13 gene expression in the diseased lung; and second, at an upstream level, this same lineage is required for Il33 gene induction that is necessary to activate ILC2s for participation in disease at all, including IL-13 production. Together, these findings provide a revised scheme for understanding and controlling the innate immune response leading to long-term postviral lung diseases with features of asthma and related progressive conditions.


Subject(s)
Lung Diseases , Lymphocytes , Animals , Immunity, Innate , Interleukin-13 , Lung , Macrophages , Mice
20.
Cell ; 182(3): 744-753.e4, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32553273

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of human infections. One limitation to the evaluation of potential therapies and vaccines to inhibit SARS-CoV-2 infection and ameliorate disease is the lack of susceptible small animals in large numbers. Commercially available laboratory strains of mice are not readily infected by SARS-CoV-2 because of species-specific differences in their angiotensin-converting enzyme 2 (ACE2) receptors. Here, we transduced replication-defective adenoviruses encoding human ACE2 via intranasal administration into BALB/c mice and established receptor expression in lung tissues. hACE2-transduced mice were productively infected with SARS-CoV-2, and this resulted in high viral titers in the lung, lung pathology, and weight loss. Passive transfer of a neutralizing monoclonal antibody reduced viral burden in the lung and mitigated inflammation and weight loss. The development of an accessible mouse model of SARS-CoV-2 infection and pathogenesis will expedite the testing and deployment of therapeutics and vaccines.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/therapy , Disease Models, Animal , Pneumonia, Viral/therapy , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/virology , Female , HEK293 Cells , Humans , Immunization, Passive/methods , Lung/metabolism , Lung/virology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Transduction, Genetic , Vero Cells , Viral Load/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...