Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
J Clin Invest ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106106

ABSTRACT

The study of transcription factors that determine specialised neuronal functions has provided invaluable insights into the physiology of the nervous system. Peripheral chemoreceptors are neurone-like electro-physiologically excitable cells that link the oxygen content of arterial blood to the neuronal control of breathing. In the adult, this oxygen chemosensitivity is exemplified by the Type I cells of the carotid body and recent work has revealed one isoform of the transcription factor HIF, HIF-2α, to have a non-redundant role in the development and function of that organ. Here we show that the activation of HIF-2α, including isolated overexpression alone, is sufficient to induce oxygen chemosensitivity in the otherwise unresponsive adult adrenal medulla. This phenotypic change in the adrenal medulla was associated with retention of extra-adrenal paraganglioma-like tissues that resemble the foetal organ of Zuckerkandl and also manifest oxygen chemosensitivity. Acquisition of chemosensitivity was associated with changes in the adrenal medullary expression of classes of genes that are ordinarily characteristic of the carotid body, including G-protein regulators and atypical subunits of mitochondrial cytochrome oxidase. Overall, the findings suggest that, at least in certain tissues, HIF-2α acts as a phenotypic driver for cells that display oxygen chemosensitivity, thus linking two major oxygen sensing systems.

2.
Nat Commun ; 15(1): 5360, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918375

ABSTRACT

Oxygen homeostasis is maintained in plants and animals by O2-sensing enzymes initiating adaptive responses to low O2 (hypoxia). Recently, the O2-sensitive enzyme ADO was shown to initiate degradation of target proteins RGS4/5 and IL32 via the Cysteine/Arginine N-degron pathway. ADO functions by catalysing oxidation of N-terminal cysteine residues, but despite multiple proteins in the human proteome having an N-terminal cysteine, other endogenous ADO substrates have not yet been identified. This could be because alternative modifications of N-terminal cysteine residues, including acetylation, prevent ADO-catalysed oxidation. Here we investigate the relationship between ADO-catalysed oxidation and NatA-catalysed acetylation of a broad range of protein sequences with N-terminal cysteines. We present evidence that human NatA catalyses N-terminal cysteine acetylation in vitro and in vivo. We then show that sequences downstream of the N-terminal cysteine dictate whether this residue is oxidised or acetylated, with ADO preferring basic and aromatic amino acids and NatA preferring acidic or polar residues. In vitro, the two modifications appear to be mutually exclusive, suggesting that distinct pools of N-terminal cysteine proteins may be acetylated or oxidised. These results reveal the sequence determinants that contribute to N-terminal cysteine protein modifications, with implications for O2-dependent protein stability and the hypoxic response.


Subject(s)
Cysteine , Oxidation-Reduction , Protein Stability , Cysteine/metabolism , Cysteine/chemistry , Acetylation , Humans , Oxygen/metabolism , Oxygen/chemistry , Protein Processing, Post-Translational , Amino Acid Sequence , HEK293 Cells
3.
J Biol Chem ; 299(9): 105156, 2023 09.
Article in English | MEDLINE | ID: mdl-37572852

ABSTRACT

In animals, adaptation to changes in cellular oxygen levels is coordinated largely by 2-oxoglutarate-dependent prolyl-hydroxylase domain (PHD) dioxygenase family members, which regulate the stability of their hypoxia-inducible factor (HIF) substrates to promote expression of genes that adapt cells to hypoxia. Recently, 2-aminoethanethiol dioxygenase (ADO) was identified as a novel O2-sensing enzyme in animals. Through N-terminal cysteine dioxygenation and the N-degron pathway, ADO regulates the stability of a set of non-transcription factor substrates; the regulators of G-protein signaling 4, 5. and 16 and interleukin-32. Here, we set out to compare and contrast the in cellulo characteristics of ADO and PHD enzymes in an attempt to better understand their co-evolution in animals. We find that ADO operates to regulate the stability of its substrates rapidly and with similar O2-sensitivity to the PHD/HIF pathway. ADO appeared less sensitive to iron chelating agents or transition metal exposure than the PHD enzymes, possibly due to tighter catalytic-site Fe2+ coordination. Unlike the PHD/HIF pathway, the ADO/N-degron pathway was not subject to feedback by hypoxic induction of ADO, and induction of ADO substrates was well sustained in response to prolonged hypoxia. The data also reveal strong interactions between proteolytic regulation of targets by ADO and transcriptional induction of those targets, that shape integrated cellular responses to hypoxia. Collectively, our comparative analysis provides further insight into ADO/N-degron-mediated oxygen sensing and its integration into established mechanisms of oxygen homeostasis.


Subject(s)
Cysteine , Oxygen , Animals , Cysteine/metabolism , Hydroxylation , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mammals/metabolism , Oxygen/metabolism , Procollagen-Proline Dioxygenase/metabolism , Signal Transduction
4.
Methods Enzymol ; 686: 267-295, 2023.
Article in English | MEDLINE | ID: mdl-37532403

ABSTRACT

2-Aminoethanethiol dioxygenase (ADO) is the mammalian orthologue of the plant cysteine oxidases and together these enzymes are responsible for catalysing dioxygenation of N-terminal cysteine residues of certain proteins. This modification creates an N-degron motif that permits arginylation and subsequent proteasomal degradation of such proteins via the Arg-branch of the N-degron pathway. In humans 4 proteins have been identified as substrates of ADO; regulators of G-protein signalling (RGS) 4, 5 and 16, and interleukin-32 (IL-32). Nt-cysteine dioxygenation of these proteins occurs rapidly under normoxic conditions, but ADO activity is very sensitive to O2 availability and as such the stability of substrate proteins is inversely proportional to cellular O2 levels. Much is still to understand about the biochemistry and physiology of this pathway in vitro and in vivo, and Cys N-degron targeted fluorescent proteins can provide a simple and effective tool to study this at both subcellular and high-throughput scales. This chapter describes the design, production and implementation of a fluorescent fusion protein proteolytically regulated by ADO and the N-degron pathway.


Subject(s)
Cysteine Dioxygenase , Cysteine , Humans , Animals , Proteolysis , Cysteine/metabolism , Cysteine Dioxygenase/metabolism , GTP-Binding Proteins/metabolism , Mammals/metabolism
6.
Redox Biol ; 53: 102319, 2022 07.
Article in English | MEDLINE | ID: mdl-35525027

ABSTRACT

Iron is an essential metal for cellular metabolism and signaling, but it has adverse effects in excess. The physiological consequences of iron deficiency are well established, yet the relationship between iron supplementation and pericellular oxygen levels in cultured cells and their downstream effects on metalloproteins has been less explored. This study exploits the metalloprotein geNOps in cultured HEK293T epithelial and EA.hy926 endothelial cells to test the iron-dependency in cells adapted to standard room air (18 kPa O2) or physiological normoxia (5 kPa O2). We show that cells in culture require iron supplementation to activate the metalloprotein geNOps and demonstrate for the first time that cells adapted to physiological normoxia require significantly lower iron compared to cells adapted to hyperoxia. This study establishes an essential role for recapitulating oxygen levels in vivo and uncovers a previously unrecognized requirement for ferrous iron supplementation under standard cell culture conditions to achieve geNOps functionality.


Subject(s)
Biosensing Techniques , Metalloproteins , Endothelial Cells/metabolism , HEK293 Cells , Humans , Iron/metabolism , Metalloproteins/metabolism , Nitric Oxide/metabolism , Oxygen/metabolism
7.
Cell Rep ; 35(3): 109020, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33852916

ABSTRACT

COVID-19, caused by the novel coronavirus SARS-CoV-2, is a global health issue with more than 2 million fatalities to date. Viral replication is shaped by the cellular microenvironment, and one important factor to consider is oxygen tension, in which hypoxia inducible factor (HIF) regulates transcriptional responses to hypoxia. SARS-CoV-2 primarily infects cells of the respiratory tract, entering via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2). We demonstrate that hypoxia and the HIF prolyl hydroxylase inhibitor Roxadustat reduce ACE2 expression and inhibit SARS-CoV-2 entry and replication in lung epithelial cells via an HIF-1α-dependent pathway. Hypoxia and Roxadustat inhibit SARS-CoV-2 RNA replication, showing that post-entry steps in the viral life cycle are oxygen sensitive. This study highlights the importance of HIF signaling in regulating multiple aspects of SARS-CoV-2 infection and raises the potential use of HIF prolyl hydroxylase inhibitors in the prevention or treatment of COVID-19.


Subject(s)
COVID-19/metabolism , Epithelial Cells/metabolism , Glycine/analogs & derivatives , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isoquinolines/pharmacology , Lung/metabolism , SARS-CoV-2/physiology , Virus Internalization/drug effects , Virus Replication/drug effects , A549 Cells , Animals , COVID-19/pathology , Caco-2 Cells , Cell Hypoxia/drug effects , Chlorocebus aethiops , Epithelial Cells/virology , Glycine/pharmacology , Humans , Lung/virology , Mice , Vero Cells , COVID-19 Drug Treatment
8.
Redox Biol ; 37: 101708, 2020 10.
Article in English | MEDLINE | ID: mdl-32949969

ABSTRACT

Ischemic stroke is associated with a surge in reactive oxygen species generation during reperfusion. The narrow therapeutic window for the delivery of intravenous thrombolysis and endovascular thrombectomy limits therapeutic options for patients. Thus, understanding the mechanisms regulating neurovascular redox defenses are key for improved clinical translation. Our previous studies in a rodent model of ischemic stroke established that activation of Nrf2 defense enzymes by pretreatment with sulforaphane (SFN) affords protection against neurovascular and neurological deficits. We here further investigate SFN mediated protection in mouse brain microvascular endothelial cells (bEnd.3) adapted long-term (5 days) to hyperoxic (18 kPa) and normoxic (5 kPa) O2 levels. Using an O2-sensitive phosphorescent nanoparticle probe, we measured an intracellular O2 level of 3.4 ± 0.1 kPa in bEnd 3 cells cultured under 5 kPa O2. Induction of HO-1 and GCLM by SFN (2.5 µM) was significantly attenuated in cells adapted to 5 kPa O2, despite nuclear accumulation of Nrf2. To simulate ischemic stroke, bEnd.3 cells were adapted to 18 or 5 kPa O2 and subjected to hypoxia (1 kPa O2, 1 h) and reoxygenation. In cells adapted to 18 kPa O2, reoxygenation induced free radical generation was abrogated by PEG-SOD and significantly attenuated by pretreatment with SFN (2.5 µM). Silencing Nrf2 transcription abrogated HO-1 and NQO1 induction and led to a significant increase in reoxygenation induced free radical generation. Notably, reoxygenation induced oxidative stress, assayed using the luminescence probe L-012 and fluorescence probes MitoSOX™ Red and FeRhoNox™-1, was diminished in cells cultured under 5 kPa O2, indicating an altered redox phenotype in brain microvascular cells adapted to physiological normoxia. As redox and other intracellular signaling pathways are critically affected by O2, the development of antioxidant therapies targeting the Keap1-Nrf2 defense pathway in treatment of ischemia-reperfusion injury in stroke, coronary and renal disease will require in vitro studies conducted under well-defined O2 levels.


Subject(s)
NF-E2-Related Factor 2 , Oxygen , Animals , Brain/metabolism , Endothelial Cells/metabolism , Humans , Hypoxia , Isothiocyanates , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Sulfoxides
9.
Science ; 365(6448): 65-69, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31273118

ABSTRACT

Organisms must respond to hypoxia to preserve oxygen homeostasis. We identify a thiol oxidase, previously assigned as cysteamine (2-aminoethanethiol) dioxygenase (ADO), as a low oxygen affinity (high-K mO2) amino-terminal cysteine dioxygenase that transduces the oxygen-regulated stability of proteins by the N-degron pathway in human cells. ADO catalyzes the conversion of amino-terminal cysteine to cysteine sulfinic acid and is related to the plant cysteine oxidases that mediate responses to hypoxia by an identical posttranslational modification. We show in human cells that ADO regulates RGS4/5 (regulator of G protein signaling) N-degron substrates, modulates G protein-coupled calcium ion signals and mitogen-activated protein kinase activity, and that its activity extends to other N-cysteine proteins including the angiogenic cytokine interleukin-32. Identification of a conserved enzymatic oxygen sensor in multicellular eukaryotes opens routes to better understanding and therapeutic targeting of adaptive responses to hypoxia.


Subject(s)
Dioxygenases/metabolism , Oxygen/metabolism , Anaerobiosis , Arabidopsis/genetics , Arabidopsis/metabolism , Calcium/metabolism , Calcium Signaling , Cell Line, Tumor , Cysteine/metabolism , Dioxygenases/genetics , Humans , Interleukins/metabolism , MAP Kinase Kinase Kinase 5/metabolism , RGS Proteins/metabolism
10.
Physiol Rev ; 99(1): 161-234, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30354965

ABSTRACT

The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.


Subject(s)
Cell Physiological Phenomena/physiology , Mitochondria/metabolism , Models, Animal , Oxygen Consumption/physiology , Oxygen/metabolism , Air/analysis , Animals , Humans
11.
FASEB J ; 32(5): 2531-2538, 2018 05.
Article in English | MEDLINE | ID: mdl-29273673

ABSTRACT

Unregulated increases in cellular Ca2+ homeostasis are a hallmark of pathophysiological conditions and a key trigger of cell death. Endothelial cells cultured under physiologic O2 conditions (5% O2) exhibit a reduced cytosolic Ca2+ response to stimulation. The mechanism for reduced plateau [Ca2+]i upon stimulation was due to increased sarco/endoplasmic reticulum Ca2+ ATPase (SERCA)-mediated reuptake rather than changes in Ca2+ influx capacity. Agonist-stimulated phosphorylation of the SERCA regulatory protein phospholamban was increased in cells cultured under 5% O2. Elevation of cytosolic and mitochondrial [Ca2+] and cell death after prolonged ionomycin treatment, as a model of Ca2+ overload, were lower when cells were cultured long-term under 5% compared with 18% O2. This protection was abolished by cotreatment with the SERCA inhibitor cyclopiazonic acid. Taken together, these results demonstrate that culturing cells under hyperoxic conditions reduces their ability to efficiently regulate [Ca2+]i, resulting in greater sensitivity to cytotoxic stimuli.-Keeley, T. P., Siow, R. C. M., Jacob, R., Mann, G. E. Reduced SERCA activity underlies dysregulation of Ca2+ homeostasis under atmospheric O2 levels.


Subject(s)
Calcium Signaling , Calcium/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Hyperoxia/metabolism , Oxygen/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Calcium-Binding Proteins/metabolism , Cell Death/drug effects , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hyperoxia/pathology , Indoles/pharmacology , Ionomycin/pharmacology , Mitochondria/metabolism , Mitochondria/pathology
12.
FASEB J ; 31(12): 5172-5183, 2017 12.
Article in English | MEDLINE | ID: mdl-28760745

ABSTRACT

Intracellular O2 is a key regulator of NO signaling, yet most in vitro studies are conducted in atmospheric O2 levels, hyperoxic with respect to the physiologic milieu. We investigated NO signaling in endothelial cells cultured in physiologic (5%) O2 and stimulated with histamine or shear stress. Culture of cells in 5% O2 (>5 d) decreased histamine- but not shear stress-stimulated endothelial (e)NOS activity. Unlike cells adapted to a hypoxic environment (1% O2), those cultured in 5% O2 still mobilized sufficient Ca2+ to activate AMPK. Enhanced expression and membrane targeting of PP2A-C was observed in 5% O2, resulting in greater interaction with eNOS in response to histamine. Moreover, increased dephosphorylation of eNOS in 5% O2 was Ca2+-sensitive and reversed by okadaic acid or PP2A-C siRNA. The present findings establish that Ca2+ mobilization stimulates both NO synthesis and PP2A-mediated eNOS dephosphorylation, thus constituting a novel negative feedback mechanism regulating eNOS activity not present in response to shear stress. This, coupled with enhanced NO bioavailability, underpins differences in NO signaling induced by inflammatory and physiologic stimuli that are apparent only in physiologic O2 levels. Furthermore, an explicit delineation between physiologic normoxia and genuine hypoxia is defined here, with implications for our understanding of pathophysiological hypoxia.-Keeley, T. P., Siow, R. C. M., Jacob, R., Mann, G. E. A PP2A-mediated feedback mechanism controls Ca2+-dependent NO synthesis under physiological oxygen.


Subject(s)
Calcium/metabolism , Nitric Oxide/metabolism , Protein Phosphatase 2/metabolism , Blotting, Western , Cell Hypoxia/drug effects , Cyclic GMP/metabolism , Cytosol/drug effects , Cytosol/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Histamine/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxygen/pharmacology , Phosphorylation/drug effects , Signal Transduction/drug effects
13.
Free Radic Biol Med ; 92: 152-162, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26698668

ABSTRACT

The effects of physiological oxygen tension on Nuclear Factor-E2-Related Factor 2 (Nrf2)-regulated redox signaling remain poorly understood. We report the first study of Nrf2-regulated signaling in human primary endothelial cells (EC) adapted long-term to physiological O2 (5%). Adaptation of EC to 5% O2 had minimal effects on cell ultrastructure, viability, basal redox status or HIF1-α expression. Affymetrix array profiling and subsequent qPCR/protein validation revealed that induction of select Nrf2 target genes, HO-1 and NQO1, was significantly attenuated in cells adapted to 5% O2, despite nuclear accumulation and DNA binding of Nrf2. Diminished HO-1 induction under 5% O2 was stimulus independent and reversible upon re-adaptation to air or silencing of the Nrf2 repressor Bach1, notably elevated under 5% O2. Induction of GSH-related genes xCT and GCLM were oxygen and Bach1-insensitive during long-term culture under 5% O2, providing the first evidence that genes related to GSH synthesis mediate protection afforded by Nrf2-Keap1 defense pathway in cells adapted to physiological O2 levels encountered in vivo.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Coronary Vessels/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , Oxygen/metabolism , Amino Acid Transport System y+/metabolism , Antioxidants/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endothelial Cells/metabolism , Fanconi Anemia Complementation Group Proteins/metabolism , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Veins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL