Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(19): 7198-7205, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756817

ABSTRACT

Hybrid organic-inorganic perovskites (HOIPs) occupy a prominent position in the field of materials chemistry due to their attractive optoelectronic properties. While extensive work has been done on the crystalline materials over the past decades, the newly reported glasses formed from HOIPs open up a new avenue for perovskite research with their unique structures and functionalities. Melt-quenching is the predominant route to glass formation; however, the absence of a stable liquid state prior to thermal decomposition precludes this method for most HOIPs. In this work, we describe the first mechanochemically-induced crystal-glass transformation of HOIPs as a rapid, green and efficient approach for producing glasses. The amorphous phase was formed from the crystalline phase within 10 minutes of ball-milling, and exhibited glass transition behaviour as evidenced by thermal analysis techniques. Time-resolved in situ ball-milling with synchrotron powder diffraction was employed to study the microstructural evolution of amorphisation, which showed that the crystallite size reaches a comminution limit before the amorphisation process is complete, indicating that energy may be further accumulated as crystal defects. Total scattering experiments revealed the limited short-range order of amorphous HOIPs, and their optical properties were studied by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy.

2.
Chem Soc Rev ; 53(7): 3606-3629, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38426588

ABSTRACT

The structural knowledge of metal-organic frameworks is crucial to the understanding and development of new efficient materials for industrial implementation. This review classifies and discusses recent advanced literature reports on phase transitions that occur during thermal treatments on metal-organic frameworks and their characterisation. Thermally activated phase transitions and procceses are classified according to the temperaturatures at which they occur: high temperature (reversible and non-reversible) and low temperature. In addition, theoretical calculations and modelling approaches employed to better understand these structural phase transitions are also reviewed.

3.
Commun Chem ; 6(1): 269, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071376

ABSTRACT

The topology of amorphous materials can be affected by mechanical forces during compression or milling, which can induce material densification. Here, we show that densified amorphous silica (SiO2) fabricated by cold compression of siliceous zeolite (SZ) is permanently densified, unlike densified glassy SiO2 (GS) fabricated by cold compression although the X-ray diffraction data and density of the former are identical to those of the latter. Moreover, the topology of the densified amorphous SiO2 fabricated from SZ retains that of crystalline SZ, whereas the densified GS relaxes to pristine GS after thermal annealing. These results indicate that it is possible to design new functional amorphous materials by tuning the topology of the initial zeolitic crystalline phases.

4.
Chem Sci ; 14(42): 11737-11748, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37920351

ABSTRACT

Recently, increased attention has been focused on amorphous metal-organic frameworks (MOFs) and, more specifically, MOF glasses, the first new glass category discovered since the 1970s. In this work, we explore the fabrication of a compositional series of hybrid blends, the first example of blending a MOF and inorganic glass. We combine ZIF-62(Zn) glass and an inorganic glass, 30Na2O-70P2O5, to combine the chemical versatility of the MOF glass with the mechanical properties of the inorganic glass. We investigate the interfacial interactions between the two components using pair distribution function analysis and solid state NMR spectroscopy, and suggest potential interactions between the two phases. Thermal analysis of the blend samples indicated that they were less thermally stable than the starting materials and had a Tg shifted relative to the pristine materials. Annular dark field scanning transmission electron microscopy tomography, X-ray energy dispersive spectroscopy (EDS), nanoindentation and 31P NMR all indicated close mixing of the two phases, suggesting the formation of immiscible blends.

5.
J Am Chem Soc ; 145(42): 22913-22924, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37819708

ABSTRACT

The interface within a composite is critically important for the chemical and physical properties of these materials. However, experimental structural studies of the interfacial regions within metal-organic framework (MOF) composites are extremely challenging. Here, we provide the first example of a new MOF composite family, i.e., using an inorganic glass matrix host in place of the commonly used organic polymers. Crucially, we also decipher atom-atom interactions at the interface. In particular, we dispersed a zeolitic imidazolate framework (ZIF-8) within a phosphate glass matrix and identified interactions at the interface using several different analysis methods of pair distribution function and multinuclear multidimensional magic angle spinning nuclear magnetic resonance spectroscopy. These demonstrated glass-ZIF atom-atom correlations. Additionally, carbon dioxide uptake and stability tests were also performed to check the increment of the surface area and the stability and durability of the material in different media. This opens up possibilities for creating new composites that include the intrinsic chemical properties of the constituent MOFs and inorganic glasses.

6.
Angew Chem Int Ed Engl ; 62(44): e202310878, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37647152

ABSTRACT

The catalytic activity of multifunctional, microporous materials is directly linked to the spatial arrangement of their structural building blocks. Despite great achievements in the design and incorporation of isolated catalytically active metal complexes within such materials, a detailed understanding of their atomic-level structure and the local environment of the active species remains a fundamental challenge, especially when these latter are hosted in non-crystalline organic polymers. Here, we show that by combining computational chemistry with pair distribution function analysis, 129 Xe NMR, and Dynamic Nuclear Polarization enhanced NMR spectroscopy, a very accurate description of the molecular structure and confining surroundings of a catalytically active Rh-based organometallic complex incorporated inside the cavity of amorphous bipyridine-based porous polymers is obtained. Small, but significant, differences in the structural properties of the polymers are highlighted depending on their backbone motifs.

7.
Inorg Chem ; 62(26): 10092-10099, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37326492

ABSTRACT

Recent research on metal-organic frameworks (MOFs) has shown a shift from considering only the crystalline high-porosity phases to exploring their amorphous counterparts. Applying pressure to a crystalline MOF is a common method of amorphization, as MOFs contain large void spaces that can collapse, reducing the accessible surface area. This can be either a desired change or indeed an unwanted side effect of the application of pressure. In either case, understanding the MOF's pressure response is extremely important. Three such MOFs with varying pore sizes (UiO-66, MOF-808, and NU-1000) were investigated using in situ high-pressure X-ray diffraction and Raman spectroscopy. Partial crystallinity was observed in all three MOFs above 10 GPa, along with some recovery of crystallinity on return to ambient conditions if the frameworks were not compressed above thresholds of 13.3, 14.2, and 12.3 GPa for UiO-66, MOF-808, and NU-1000, respectively. This threshold was marked by an unexpected increase in one or more lattice parameters with pressure in all MOFs. Comparison of compressibility between MOFs suggests penetration of the pressure-transmitting oil into MOF-808 and NU-1000. The survival of some crystallinity above 10 GPa in all of these MOFs despite their differing pore sizes and extents of oil penetration demonstrates the importance of high-pressure characterization of known structures.

8.
J Am Chem Soc ; 145(20): 11258-11264, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37158707

ABSTRACT

We describe the first meltable iron-based zeolitic imidazolate framework (ZIF), denoted MUV-24. This material, elusive from direct synthesis, is obtained from the thermal treatment of [Fe3(im)6(Him)2], which yields Fe(im)2 upon loss of the neutral imidazole molecules. Different crystalline phase transformations are observed upon further heating, until the material melts at 482 °C. Vitrification upon cooling of the liquid phase gives rise to the first Fe-metal-organic framework glass. X-ray total scattering experiments show that the tetrahedral environment of the crystalline solids is maintained in the glass, whereas nanoindentation measurements reveal an increase in Young's modulus, in agreement with stiffening upon vitrification.

9.
Chem Commun (Camb) ; 59(6): 732-735, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36541403

ABSTRACT

The chemistries that can be incorporated within melt-quenched zeolitic imidazolate framework (ZIF) glasses are currently limited. Here we describe the preparation of a previously unknown purine-containing ZIF which we name ZIF-UC-7. We find that it melts and forms a glass at one of the lowest temperatures reported for 3D hybrid frameworks.

10.
Chem Mater ; 35(24): 10564-10583, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38162043

ABSTRACT

In this work, we present a variable-temperature 23Na NMR and variable-temperature and variable-frequency electron paramagnetic resonance (EPR) analysis of the local structure of a layered P2 Na-ion battery cathode material, Na0.67[Mg0.28Mn0.72]O2 (NMMO). For the first time, we elucidate the superstructure in this material by using synchrotron X-ray diffraction and total neutron scattering and show that this superstructure is consistent with NMR and EPR spectra. To complement our experimental data, we carry out ab initio calculations of the quadrupolar and hyperfine 23Na NMR shifts, the Na+ ion hopping energy barriers, and the EPR g-tensors. We also describe an in-house simulation script for modeling the effects of ionic mobility on variable-temperature NMR spectra and use our simulations to interpret the experimental spectra, available upon request. We find long-zigzag-type Na ordering with two different types of Na sites, one with high mobility and the other with low mobility, and reconcile the tendency toward Na+/vacancy ordering to the preservation of local electroneutrality. The combined magnetic resonance methodology for studying local paramagnetic environments from the perspective of electron and nuclear spins will be useful for examining the local structures of materials for devices.

11.
Chem Commun (Camb) ; 58(85): 11949-11952, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36205108

ABSTRACT

The structure of a new ZIF-8 polymorph with quartz topology (qtz) is reported. This qtz-[Zn(mIm)2] phase was obtained by mechanically amorphising crystalline ZIF-8, before heating the resultant amorphous phase to between 282 and 316 °C. The high-temperature phase structure was obtained from powder X-ray diffraction, and its thermal behaviour, CO2 gas sorption properties and dye adsorption ability were investigated.

12.
Chem Mater ; 34(20): 9042-9054, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36313398

ABSTRACT

Amorphous metal-organic frameworks (aMOFs) are a class of disordered framework materials with a defined local order given by the connectivity between inorganic nodes and organic linkers, but absent long-range order. The rational development of function for aMOFs is hindered by our limited understanding of the underlying structure-property relationships in these systems, a consequence of the absence of long-range order, which makes experimental characterization particularly challenging. Here, we use a versatile modeling approach to generate in silico structural models for an aMOF based on Fe trimers and 1,3,5-benzenetricarboxylate (BTC) linkers, Fe-BTC. We build a phase space for this material that includes nine amorphous phases with different degrees of defects and local order. These models are analyzed through a combination of structural analysis, pore analysis, and pair distribution functions. Therefore, we are able to systematically explore the effects of the variation of each of these features, both in isolation and combined, for a disordered MOF system, something that would not be possible through experiment alone. We find that the degree of local order has a greater impact on structure and properties than the degree of defects. The approach presented here is versatile and allows for the study of different structural features and MOF chemistries, enabling the derivation of design rules for the rational development of aMOFs.

13.
Nanoscale ; 14(44): 16524-16535, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36285652

ABSTRACT

Characterization of nanoscale changes in the atomic structure of amorphous materials is a profound challenge. Established X-ray and neutron total scattering methods typically provide sufficient signal quality only over macroscopic volumes. Pair distribution function analysis using electron scattering (ePDF) in the scanning transmission electron microscope (STEM) has emerged as a method of probing nanovolumes of these materials, but inorganic glasses as well as metal-organic frameworks (MOFs) and many other materials containing organic components are characteristically prone to irreversible changes after limited electron beam exposures. This beam sensitivity requires 'low-dose' data acquisition to probe inorganic glasses, amorphous and glassy MOFs, and MOF composites. Here, we use STEM-ePDF applied at low electron fluences (10 e- Å-2) combined with unsupervised machine learning methods to map changes in the short-range order with ca. 5 nm spatial resolution in a composite material consisting of a zeolitic imidazolate framework glass agZIF-62 and a 0.67([Na2O]0.9[P2O5])-0.33([AlO3/2][AlF3]1.5) inorganic glass. STEM-ePDF enables separation of MOF and inorganic glass domains from atomic structure differences alone, showing abrupt changes in atomic structure at interfaces with interatomic correlation distances seen in X-ray PDF preserved at the nanoscale. These findings underline that the average bulk amorphous structure is retained at the nanoscale in the growing family of MOF glasses and composites, a previously untested assumption in PDF analyses crucial for future non-crystalline nanostructure engineering.

14.
Chem Sci ; 13(34): 10057-10065, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36128223

ABSTRACT

Pyridoxal 5'-phosphate (PLP)-dependent enzymes have been extensively studied for their ability to fine-tune PLP cofactor electronics to promote a wide array of chemistries. Neutron crystallography offers a straightforward approach to studying the electronic states of PLP and the electrostatics of enzyme active sites, responsible for the reaction specificities, by enabling direct visualization of hydrogen atom positions. Here we report a room-temperature joint X-ray/neutron structure of aspartate aminotransferase (AAT) with pyridoxamine 5'-phosphate (PMP), the cofactor product of the first half reaction catalyzed by the enzyme. Between PMP NSB and catalytic Lys258 Nζ amino groups an equally shared deuterium is observed in an apparent low-barrier hydrogen bond (LBHB). Density functional theory calculations were performed to provide further evidence of this LBHB interaction. The structural arrangement and the juxtaposition of PMP and Lys258, facilitated by the LBHB, suggests active site preorganization for the incoming ketoacid substrate that initiates the second half-reaction.

15.
Chem Mater ; 34(5): 2187-2196, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35578693

ABSTRACT

Melt-quenched metal-organic framework (MOF) glasses have gained significant interest as the first new category of glass reported in 50 years. In this work, an amine-functionalized zeolitic imidazolate framework (ZIF), denoted ZIF-UC-6, was prepared and demonstrated to undergo both melting and glass formation. The presence of an amine group resulted in a lower melting temperature compared to other ZIFs, while also allowing material properties to be tuned by post-synthetic modification (PSM). As a prototypical example, the ZIF glass surface was functionalized with octyl isocyanate, changing its behavior from hydrophilic to hydrophobic. PSM therefore provides a promising strategy for tuning the surface properties of MOF glasses.

16.
J Phys Condens Matter ; 34(29)2022 May 16.
Article in English | MEDLINE | ID: mdl-35483339

ABSTRACT

The orientational disorder in crystalline sulfur hexafluoride, SF6, has been studied using a combination of neutron total scattering and the reverse Monte Carlo method. Analysis of the atomic configurations has shown the extent of the disorder through the evaluation of the S-F bond orientational distribution function, consistent with, but improving upon, the results of earlier neutron powder diffraction data. The correlations between orientations of neighbouring molecules have been studied through analysis of the distributions of F-F distances, showing that nearest-neighbour F-F close contacts are avoided, consistent with previous molecular dynamics simulation results. The results present a new case study of the application of neutron total scattering and the reverse Monte Carlo methods for the study of orientational disorder, where in this instance the disorder arises from orientational frustration rather than from a mismatch of molecular and site symmetries.

17.
Nat Commun ; 13(1): 2173, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35449202

ABSTRACT

The rational design of disordered frameworks is an appealing route to target functional materials. However, intentional realisation of such materials relies on our ability to readily characterise and quantify structural disorder. Here, we use multivariate analysis of pair distribution functions to fingerprint and quantify the disorder within a series of compositionally identical metal-organic frameworks, possessing different crystalline, disordered, and amorphous structures. We find this approach can provide powerful insight into the kinetics and mechanism of structural collapse that links these materials. Our methodology is also extended to a very different system, namely the melting of a zeolitic imidazolate framework, to demonstrate the potential generality of this approach across many areas of disordered structural chemistry.

18.
Chemistry ; 28(38): e202200345, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35416352

ABSTRACT

Here, we propose the combination of glassy or crystalline metal-organic frameworks (MOFs) with inorganic glasses to create novel hybrid composites and blends.The motivation behind this new composite approach is to improve the processability issues and mechanical performance of MOFs, whilst maintaining their ubiquitous properties. Herein, the precepts of successful composite formation and pairing of MOF and glass MOFs with inorganic glasses are presented. Focus is also given to the synthetic routes to such materials and the challenges anticipated in both their production and characterisation. Depending on their chemical nature, materials are classified as crystalline MOF-glass composites and blends. Additionally, the potential properties and applications of these two classes of materials are considered, the key aim being the retention of beneficial properties of both components, whilst circumventing their respective drawbacks.

20.
Chem Sci ; 13(7): 2033-2042, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35308849

ABSTRACT

Four novel dicyanamide-containing hybrid organic-inorganic ABX3 structures are reported, and the thermal behaviour of a series of nine perovskite and non-perovskite [AB(N(CN)2)3] (A = (C3H7)4N, (C4H9)4N, (C5H11)4N; B = Co, Fe, Mn) is analyzed. Structure-property relationships are investigated by varying both A-site organic and B-site transition metal cations. In particular, increasing the size of the A-site cation from (C3H7)4N → (C4H9)4N → (C5H11)4N was observed to result in a decrease in T m through an increase in ΔS f. Consistent trends in T m with metal replacement are observed with each A-site cation, with Co < Fe < Mn. The majority of the melts formed were found to recrystallise partially upon cooling, though glasses could be formed through a small degree of organic linker decomposition. Total scattering methods are used to provide a greater understanding of the melting mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...