Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 210, 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37085749

ABSTRACT

BACKGROUND: The floral volatile profile of Petunia x hybrida 'Mitchell diploid' (MD) is dominated by phenylpropanoids, many of which are derived from p-coumaric acid. However, the downstream processes involved in the production of caffeoyl-CoA and feruloyl-CoA from p-coumaric acid are complex, as the genes and biosynthesis steps are associated with flavonoids and lignin synthesis as well as floral volatiles benzenoid/phenylpropanoid (FVBP). Caffeoyl shikimate esterase (CSE) converts caffeoyl shikimate to caffeic acid and is considered one of the essential regulators in lignin production. Moreover, CSE in involved in phenylpropanoid production. To investigate the roles of CSE in FVBP biosynthesis, we used RNAi-mediated CSE down-regulated (ir-PhCSE) petunias. RESULTS: Lowered CSE transcript accumulation in ir-PhCSE plants resulted in reduced lignin layers in the stems and stunted growth, suggesting a positive correlation between lignin layers and lignin content. The altered CSE level influenced the expression of many FVBP genes, including elevated transcripts of p-coumarate-3-hydroxylase (C3H), hydroxycinnamoyl transferase (HCT), and 4-coumaric acid: CoA ligase (4CL). In particular, the expression of C4H in ir-PhCSE plants was more than twice the expression in MD plants. Moreover, the production of volatile compounds was alterend in ir-PhCSE plants. Most floral volatiles decreased, and the amounts of phenylalanine and caffeic acid were significantly lower. CONCLUSIONS: Reduced lignin layers in the stems and stunted growth in ir-PhCSE plants suggest that PhCSE is essential for lignin production and plant growth in petunia. The decreased CSE level influenced the expression of many FVBP genes, and interference of shikimate derivates altered volatile compound production. Significantly decreased caffeic acid, but not ferulic acid, in ir-PhCSE plants suggest that CSE is primarily involved in the reaction of caffeoyl shikimate. Higher C3H and C4H transcripts seem to alleviate accumulated p-coumaric acid resulting from altered CSE. Finally, alteration in C3H, HCT, and 4CL in CSE down-regulated plants suggests an interaction of the FVBP genes, leading to the regulation of floral volatiles of petunia.


Subject(s)
Esterases , Petunia , Esterases/genetics , Lignin/metabolism , Petunia/genetics , Petunia/metabolism , Down-Regulation , Plant Proteins/genetics , Plant Proteins/metabolism , Mixed Function Oxygenases/genetics , Gene Expression Regulation, Plant
2.
J Biol Chem ; 297(5): 101283, 2021 11.
Article in English | MEDLINE | ID: mdl-34626646

ABSTRACT

Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. In plants, it is not known how the C-6 hydroxylation of demethoxyubiquinone, the penultimate step in ubiquinone biosynthesis, is catalyzed. The combination of cross-species gene network modeling along with mining of embryo-defective mutant databases of Arabidopsis thaliana identified the embryo lethal locus EMB2421 (At1g24340) as a top candidate for the missing plant demethoxyubiquinone hydroxylase. In marked contrast with prototypical eukaryotic demethoxyubiquinone hydroxylases, the catalytic mechanism of which depends on a carboxylate-bridged di-iron domain, At1g24340 is homologous to FAD-dependent oxidoreductases that instead use NAD(P)H as an electron donor. Complementation assays in Saccharomyces cerevisiae and Escherichia coli demonstrated that At1g24340 encodes a functional demethoxyubiquinone hydroxylase and that the enzyme displays strict specificity for the C-6 position of the benzoquinone ring. Laser-scanning confocal microscopy also showed that GFP-tagged At1g24340 is targeted to mitochondria. Silencing of At1g24340 resulted in 40 to 74% decrease in ubiquinone content and de novo ubiquinone biosynthesis. Consistent with the role of At1g24340 as a benzenoid ring modification enzyme, this metabolic blockage could not be bypassed by supplementation with 4-hydroxybenzoate, the immediate precursor of ubiquinone's ring. Unlike in yeast, in Arabidopsis overexpression of demethoxyubiquinone hydroxylase did not boost ubiquinone content. Phylogenetic reconstructions indicated that plant demethoxyubiquinone hydroxylase is most closely related to prokaryotic monooxygenases that act on halogenated aromatics and likely descends from an event of horizontal gene transfer between a green alga and a bacterium.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mitochondria , Mixed Function Oxygenases , Phylogeny , Ubiquinone , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mitochondria/enzymology , Mitochondria/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Ubiquinone/genetics , Ubiquinone/metabolism
3.
Phytochemistry ; 186: 112738, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33756238

ABSTRACT

Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and antioxidant in eukaryotes. The recent discovery that kaempferol serves as a precursor for ubiquinone's benzenoid moiety both challenges the conventional view of flavonoids as specialized metabolites, and offers new prospects for engineering ubiquinone in plants. Here, we present evidence that Arabidopsis thaliana mutants lacking kaempferol 3-O-rhamnosyltransferase (ugt78d1) and kaempferol 3-O-glucosyltransferase (ugt78d2) activities display increased de novo biosynthesis of ubiquinone and increased ubiquinone content. These data are congruent with the proposed model that unprotected C-3 hydroxyl of kaempferol triggers the oxidative release of its B-ring as 4-hydroxybenzoate, which in turn is incorporated into ubiquinone. Ubiquinone content in the ugt78d1/ugt78d2 double knockout represented 160% of wild-type level, matching that achieved via exogenous feeding of 4-hydroxybenzoate to wild-type plants. This suggests that 4-hydroxybenzoate is no longer limiting ubiquinone biosynthesis in the ugt78d1/ugt78d2 plants. Evidence is also shown that the glucosylation of 4-hydroxybenzoate as well as the conversion of the immediate precursor of kaempferol, dihydrokaempferol, into dihydroquercetin do not compete with ubiquinone biosynthesis in A. thaliana.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Glucosyltransferases/metabolism , Glycosylation , Kaempferols , Ubiquinone
4.
Biochem J ; 476(22): 3521-3532, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31688904

ABSTRACT

Plants have evolved the ability to derive the benzenoid moiety of the respiratory cofactor and antioxidant, ubiquinone (coenzyme Q), either from the ß-oxidative metabolism of p-coumarate or from the peroxidative cleavage of kaempferol. Here, isotopic feeding assays, gene co-expression analysis and reverse genetics identified Arabidopsis 4-COUMARATE-COA LIGASE 8 (4-CL8; At5g38120) as a contributor to the ß-oxidation of p-coumarate for ubiquinone biosynthesis. The enzyme is part of the same clade (V) of acyl-activating enzymes than At4g19010, a p-coumarate CoA ligase known to play a central role in the conversion of p-coumarate into 4-hydroxybenzoate. A 4-cl8 T-DNA knockout displayed a 20% decrease in ubiquinone content compared with wild-type plants, while 4-CL8 overexpression boosted ubiquinone content up to 150% of the control level. Similarly, the isotopic enrichment of ubiquinone's ring was decreased by 28% in the 4-cl8 knockout as compared with wild-type controls when Phe-[Ring-13C6] was fed to the plants. This metabolic blockage could be bypassed via the exogenous supply of 4-hydroxybenzoate, the product of p-coumarate ß-oxidation. Arabidopsis 4-CL8 displays a canonical peroxisomal targeting sequence type 1, and confocal microscopy experiments using fused fluorescent reporters demonstrated that this enzyme is imported into peroxisomes. Time course feeding assays using Phe-[Ring-13C6] in a series of Arabidopsis single and double knockouts blocked in the ß-oxidative metabolism of p-coumarate (4-cl8; at4g19010; at4g19010 × 4-cl8), flavonol biosynthesis (flavanone-3-hydroxylase), or both (at4g19010 × flavanone-3-hydroxylase) indicated that continuous high light treatments (500 µE m-2 s-1; 24 h) markedly stimulated the de novo biosynthesis of ubiquinone independently of kaempferol catabolism.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Coenzyme A Ligases/metabolism , Peroxisomes/metabolism , Ubiquinone/analogs & derivatives , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Coenzyme A Ligases/genetics , Gene Expression Regulation, Plant , Molecular Structure , Oxidation-Reduction , Peroxisomes/chemistry , Peroxisomes/genetics , Ubiquinone/biosynthesis , Ubiquinone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL