Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39005304

ABSTRACT

The outer surface of chorionic villi in the human placenta consists of a single multinucleated cell called the syncytiotrophoblast (STB). The unique cellular ultrastructure of the STB presents challenges in deciphering its gene expression signature at the single-cell level, as the STB contains billions of nuclei in a single cell. There are many gaps in understanding the molecular mechanisms and developmental trajectories involved in STB formation and differentiation. To identify the underlying control of the STB, we performed comparative single nucleus (SN) and single cell (SC) RNA sequencing on placental tissue and tissue-derived trophoblast organoids (TOs). We found that SN was essential to capture the STB population from both tissue and TOs. Differential gene expression and pseudotime analysis of TO-derived STB identified three distinct nuclear subtypes reminiscent of those recently identified in vivo . These included a juvenile nuclear population that exhibited both CTB and STB marker expression, a population enriched in genes involved in oxygen sensing, and a fully differentiated subtype. Notably, suspension culture conditions of TOs that restore the native orientation of the STB (STB out ) showed elevated expression of canonical STB markers and pregnancy hormones, along with a greater proportion of the terminally differentiated mature STB subtype, compared to those cultivated with an inverted STB polarity (STB in ). Gene regulatory analysis identified novel markers of STB differentiation conserved in tissue and TOs, including the chromatin remodeler RYBP, that exhibited STB-specific RNA and protein expression. Finally, we compared STB gene expression signatures amongst first trimester tissue, full-term tissue, and TOs, identifying many commonalities but also notable variability across each sample type. This indicates that STB gene expression is responsive to its environmental context. Our findings emphasize the utility of TOs to accurately model STB differentiation and the distinct nuclear subtypes observed in vivo , offering a versatile platform for unraveling the molecular mechanisms governing STB functions in placental biology and disease.

2.
Elife ; 102021 03 04.
Article in English | MEDLINE | ID: mdl-33661100

ABSTRACT

In mammals, HP1-mediated heterochromatin forms positionally and mechanically stable genomic domains even though the component HP1 paralogs, HP1α, HP1ß, and HP1γ, display rapid on-off dynamics. Here, we investigate whether phase-separation by HP1 proteins can explain these biological observations. Using bulk and single-molecule methods, we show that, within phase-separated HP1α-DNA condensates, HP1α acts as a dynamic liquid, while compacted DNA molecules are constrained in local territories. These condensates are resistant to large forces yet can be readily dissolved by HP1ß. Finally, we find that differences in each HP1 paralog's DNA compaction and phase-separation properties arise from their respective disordered regions. Our findings suggest a generalizable model for genome organization in which a pool of weakly bound proteins collectively capitalize on the polymer properties of DNA to produce self-organizing domains that are simultaneously resistant to large forces at the mesoscale and susceptible to competition at the molecular scale.


Subject(s)
Chromobox Protein Homolog 5/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA/metabolism , Heterochromatin/metabolism , Cells, Cultured , Chromobox Protein Homolog 5/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Humans , Protein Binding
3.
Genes Dev ; 33(13-14): 799-813, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31171700

ABSTRACT

Mammalian development requires effective mechanisms to repress genes whose expression would generate inappropriately specified cells. The Polycomb-repressive complex 1 (PRC1) family complexes are central to maintaining this repression. These include a set of canonical PRC1 complexes, each of which contains four core proteins, including one from the CBX family. These complexes have been shown previously to reside in membraneless organelles called Polycomb bodies, leading to speculation that canonical PRC1 might be found in a separate phase from the rest of the nucleus. We show here that reconstituted PRC1 readily phase-separates into droplets in vitro at low concentrations and physiological salt conditions. This behavior is driven by the CBX2 subunit. Point mutations in an internal domain of Cbx2 eliminate phase separation. These same point mutations eliminate the formation of puncta in cells and have been shown previously to eliminate nucleosome compaction in vitro and generate axial patterning defects in mice. Thus, the domain of CBX2 that is important for phase separation is the same domain shown previously to be important for chromatin compaction and proper development, raising the possibility of a mechanistic or evolutionary link between these activities.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Polycomb Repressive Complex 1/chemistry , Animals , Cell Line , Escherichia coli/genetics , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Organelles/metabolism , Point Mutation , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Protein Domains , Sf9 Cells
4.
Methods Enzymol ; 611: 51-66, 2018.
Article in English | MEDLINE | ID: mdl-30471698

ABSTRACT

The ability of the heterochromatin protein-1 (HP1) to phase separate into droplets suggests new mechanisms of gene organization in the cell nucleus. An accumulating body of work suggests that other nuclear proteins also display phase separation behaviors in vitro. To understand the mechanistic and biological significance of such droplet formation a rigorous biophysical characterization of this behavior is necessary. Herein we describe procedures for imaging HP1 droplets by brightfield microscopy, and two methods to quantify phase separation.


Subject(s)
Chromosomal Proteins, Non-Histone/chemistry , Microscopy/methods , Phase Transition , Spectrophotometry/methods , Buffers , Cell Culture Techniques/methods , Cell Nucleus/chemistry , Chromatography, Gel/methods , Chromobox Protein Homolog 5 , Equipment Design , Humans , Microscopy/instrumentation , Nephelometry and Turbidimetry/methods , Spectrophotometry/instrumentation
5.
Nature ; 547(7662): 236-240, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28636604

ABSTRACT

Gene silencing by heterochromatin is proposed to occur in part as a result of the ability of heterochromatin protein 1 (HP1) proteins to spread across large regions of the genome, compact the underlying chromatin and recruit diverse ligands. Here we identify a new property of the human HP1α protein: the ability to form phase-separated droplets. While unmodified HP1α is soluble, either phosphorylation of its N-terminal extension or DNA binding promotes the formation of phase-separated droplets. Phosphorylation-driven phase separation can be promoted or reversed by specific HP1α ligands. Known components of heterochromatin such as nucleosomes and DNA preferentially partition into the HP1α droplets, but molecules such as the transcription factor TFIIB show no preference. Using a single-molecule DNA curtain assay, we find that both unmodified and phosphorylated HP1α induce rapid compaction of DNA strands into puncta, although with different characteristics. We show by direct protein delivery into mammalian cells that an HP1α mutant incapable of phase separation in vitro forms smaller and fewer nuclear puncta than phosphorylated HP1α. These findings suggest that heterochromatin-mediated gene silencing may occur in part through sequestration of compacted chromatin in phase-separated HP1 droplets, which are dissolved or formed by specific ligands on the basis of nuclear context.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Heterochromatin/metabolism , Animals , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , DNA/metabolism , Gene Silencing , Heterochromatin/chemistry , Heterochromatin/genetics , Humans , Ligands , Mice , NIH 3T3 Cells , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Phosphorylation , Solubility , Transcription Factor TFIIB/metabolism
6.
Article in English | MEDLINE | ID: mdl-27895513

ABSTRACT

Resistance to antiestrogen therapy remains a significant problem in breast cancer. Low expression of inhibitor of growth 4 (ING4) in primary tumors has been correlated with increased rates of recurrence in estrogen receptor-positive (ER+) breast cancer patients, suggesting a role for ING4 in ER signaling. This study provides evidence that ING4 inhibits ER activity. ING4 overexpression increased the sensitivity of T47D and MCF7 ER+ breast cancer cells to hormone deprivation. ING4 attenuated maximal estrogen-dependent cell growth without affecting the dose-response of estrogen. These results indicated that ING4 functions as a noncompetitive inhibitor of estrogen signaling and may inhibit estrogen-independent ER activity. Supportive of this, treatment with fulvestrant but not tamoxifen rendered T47D cells sensitive to hormone deprivation as did ING4 overexpression. ING4 did not affect nuclear ERα protein expression, but repressed selective ER-target gene transcription. Taken together, these results demonstrated that ING4 inhibited estrogen-independent ER activity, suggesting that ING4-low breast tumors recur faster due to estrogen-independent ER activity that renders tamoxifen less effective. This study puts forth fulvestrant as a proposed therapy choice for patients with ING4-low ER+ breast tumors.

8.
PLoS One ; 10(7): e0132333, 2015.
Article in English | MEDLINE | ID: mdl-26147390

ABSTRACT

CD4 interactions with class II major histocompatibility complex (MHC) molecules are essential for CD4+ T cell development, activation, and effector functions. While its association with p56lck (Lck), a Src kinase, is important for these functions CD4 also has an Lck-independent role in TCR signaling that is incompletely understood. Here, we identify a conserved GGxxG motif in the CD4 transmembrane domain that is related to the previously described GxxxG motifs of other proteins and predicted to form a flat glycine patch in a transmembrane helix. In other proteins, these patches have been reported to mediate dimerization of transmembrane domains. Here we show that introducing bulky side-chains into this patch (GGxxG to GVxxL) impairs the Lck-independent role of CD4 in T cell activation upon TCR engagement of agonist and weak agonist stimulation. However, using Forster's Resonance Energy Transfer (FRET), we saw no evidence that these mutations decreased CD4 dimerization either in the unliganded state or upon engagement of pMHC concomitantly with the TCR. This suggests that the CD4 transmembrane domain is either mediating interactions with an unidentified partner, or mediating some other function such as membrane domain localization that is important for its role in T cell activation.


Subject(s)
Lymphocyte Activation/physiology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Protein Multimerization/physiology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Amino Acid Motifs , Animals , CD4 Antigens , CHO Cells , Cricetinae , Cricetulus , Fluorescence Resonance Energy Transfer , Humans , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Protein Structure, Tertiary , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL