Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(3): e0279833, 2023.
Article in English | MEDLINE | ID: mdl-36888589

ABSTRACT

Freshwater turtle populations are declining globally as a result of anthropogenic activities. Threats to turtles in urban areas are exacerbated by road mortality and subsidized predators, which can lead to catastrophic shifts in population size and structure. Headstarting is used as a conservation tool to supplement turtle populations that may otherwise face extirpation. A headstarting program began in 2012 to recover a functionally extinct population of Blanding's Turtles (Emydoidea blandingii) 26in Rouge National Urban Park (RNUP), Ontario, Canada. The original population included five adults and one juvenile turtle. From 2014 to 2020, 270 headstarted turtles were released. The population has been monitored annually since 2014 using visual-encounter surveys, radio-telemetry, and live trapping (from 2018 onwards). We used mark-recapture and radio-telemetry data to quantify abundance, survival, and sex ratio of the headstarted turtle population. Using a Jolly-Seber model, we estimated abundance to be 183 turtles (20 turtles/ha) in 2020. Estimated survival of headstarted turtles approached 89%, except for turtles released in 2019 when survival was 43% as a result of a known mass mortality event at the study site. Pre- and post-release sex ratios were not significantly different (χ2 = 1.92; p = 0.16), but shifted from 1:1.5 to 1:1 male:female post-release. Given that the headstarted turtles have not yet reached sexual maturity, it is unclear whether headstarted turtles will reach adulthood and successfully reproduce to maintain a self-sustaining population. Thus, to evaluate the success of the headstarting program, long-term monitoring is required.


Subject(s)
Turtles , Animals , Female , Male , Population Density , Ontario , Fresh Water
2.
Ecol Appl ; 33(3): e2789, 2023 04.
Article in English | MEDLINE | ID: mdl-36482023

ABSTRACT

Adult mortality is often the most sensitive vital rate affecting at-risk wildlife populations. Therefore, road ecology studies often focus on adult mortality despite the possibility for roads to be hazardous to juvenile individuals during natal dispersal. Failure to quantify concurrent variation in mortality risk and population sensitivity across demographic states can mislead the efforts to understand and mitigate the effects of population threats. To compare relative population impacts from road mortality among demographic classes, we weighted mortality observations by applying reproductive value analysis to quantify expected stage-specific contributions to population growth. We demonstrate this approach for snapping turtles (Chelydra serpentina) observed on roads at two focal sites in Ontario, Canada, where we collected data for both live and dead individuals observed on roads. We estimated reproductive values using stage-classified matrix models to compare relative population-level impacts of adult and juvenile mortality. Reproductive value analysis is a tractable approach to assessing demographically variable effects for applications covering large spatial scales, nondiscrete populations, or where abundance data are lacking. For one site with long-term life-history data, we compared demographic frequency on roads to expected general population frequencies predicted by the matrix model. Our application of reproductive value is sex specific but, as juvenile snapping turtles lack external secondary sex characters, we estimated the sex ratio of road-crossing juveniles after dissecting and sexing carcasses collected on roads at five sites across central Ontario, Canada. Juveniles were more abundant on roads than expected, suggesting a substantial dispersal contribution, and the road-killed juvenile sex ratio approached 1:1. A higher proportion of juveniles were also found dead compared with adults, and cumulative juvenile mortality had similar population-level importance as adult mortality. This suggests that the impact of roads needs to be considered across all life stages, even in wildlife species with slow life histories, such as snapping turtles, that are particularly sensitive to adult mortality.


Subject(s)
Turtles , Humans , Animals , Male , Female , Reptiles , Ontario , Animals, Wild
SELECTION OF CITATIONS
SEARCH DETAIL
...