Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(13): e2311127121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38507447

ABSTRACT

Microbiota comprise the bulk of life's diversity, yet we know little about how populations of microbes accumulate adaptive diversity across natural landscapes. Adaptation to stressful soil conditions in plants provides seminal examples of adaptation in response to natural selection via allelic substitution. For microbes symbiotic with plants however, horizontal gene transfer allows for adaptation via gene gain and loss, which could generate fundamentally different evolutionary dynamics. We use comparative genomics and genetics to elucidate the evolutionary mechanisms of adaptation to physiologically stressful serpentine soils in rhizobial bacteria in western North American grasslands. In vitro experiments demonstrate that the presence of a locus of major effect, the nre operon, is necessary and sufficient to confer adaptation to nickel, a heavy metal enriched to toxic levels in serpentine soil, and a major axis of environmental soil chemistry variation. We find discordance between inferred evolutionary histories of the core genome and nreAXY genes, which often reside in putative genomic islands. This suggests that the evolutionary history of this adaptive variant is marked by frequent losses, and/or gains via horizontal acquisition across divergent rhizobium clades. However, different nre alleles confer distinct levels of nickel resistance, suggesting allelic substitution could also play a role in rhizobium adaptation to serpentine soil. These results illustrate that the interplay between evolution via gene gain and loss and evolution via allelic substitution may underlie adaptation in wild soil microbiota. Both processes are important to consider for understanding adaptive diversity in microbes and improving stress-adapted microbial inocula for human use.


Subject(s)
Metals, Heavy , Rhizobium , Humans , Rhizobium/genetics , Nickel , Metals, Heavy/toxicity , Genomics , Soil
2.
BMC Genomics ; 21(1): 599, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32867668

ABSTRACT

BACKGROUND: Vibriosis has been implicated in major losses of larvae at shellfish hatcheries. However, the species of Vibrio responsible for disease in aquaculture settings and their associated virulence genes are often variable or undefined. Knowledge of the specific nature of these factors is essential to developing a better understanding of the environmental and biological conditions that lead to larvae mortality events in hatcheries. We tested the virulence of 51 Vibrio strains towards Pacific Oyster (Crassostreae gigas) larvae and sequenced draft genomes of 42 hatchery-associated vibrios to determine groups of orthologous genes associated with virulence and to determine the phylogenetic relationships among pathogens and non-pathogens of C. gigas larvae. RESULTS: V. coralliilyticus strains were the most prevalent pathogenic isolates. A phylogenetic logistic regression model identified over 500 protein-coding genes correlated with pathogenicity. Many of these genes had straightforward links to disease mechanisms, including predicted hemolysins, proteases, and multiple Type 3 Secretion System genes, while others appear to have possible indirect roles in pathogenesis and may be more important for general survival in the host environment. Multiple metabolism and nutrient acquisition genes were also identified to correlate with pathogenicity, highlighting specific features that may enable pathogen survival within C. gigas larvae. CONCLUSIONS: These findings have important implications on the range of pathogenic Vibrio spp. found in oyster-rearing environments and the genetic determinants of virulence in these populations.


Subject(s)
Crassostrea/virology , Genes, Viral , Vibrio/genetics , Animals , Phylogeny , Vibrio/classification , Vibrio/pathogenicity , Virulence/genetics
3.
Evol Appl ; 12(3): 498-507, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30828370

ABSTRACT

The emergence and spread of antibiotic resistance in bacterial pathogens are a global crisis. Because many bacterial infections are caused by pathogens that reside in biofilms, we sought to investigate how biofilms influence the evolution of antibiotic resistance. We hypothesize that the inherent spatial structure of biofilms facilitates the accumulation and persistence of spontaneously evolved antibiotic-resistant mutants. To test this, we tracked the frequency of mutants resistant to kanamycin and rifampicin in biofilm populations of Escherichia coli before, during, and after an antibiotic treatment regimen. Our results show that biofilms accumulate resistant mutants even in the absence of antibiotics. This resistance was found to be heritable and thus unlike the phenotypic plasticity of so-called "persister cells" that have been shown to occur in biofilms. Upon exposure to an antibiotic, resistant mutants swept to high frequency. Following the conclusion of treatment, these resistant mutants remained at unexpectedly high frequencies in the biofilms for over 45 days. In contrast, when samples from kanamycin-treated biofilms were used to found well-mixed liquid cultures and propagated by serial transfer, the frequency of resistant cells dramatically decreased as they were outcompeted by sensitive clones. These observations suggest that the emergence of antibiotic resistance through spontaneous mutations in spatially structured biofilms may significantly contribute to the emergence and persistence of mutants that are resistant to antibiotics used to treat bacterial infections.

4.
Genome Announc ; 5(41)2017 Oct 12.
Article in English | MEDLINE | ID: mdl-29025954

ABSTRACT

Reported here are the genome sequences of three Vibrio coralliilyticus isolates RE87, AIC-7, and 080116A. Each strain was isolated in association with oyster larvae in commercial aquaculture systems. These draft genomes will be useful for further studies in understanding the genomic features contributing to V. coralliilyticus pathogenicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...