Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Environ Radioact ; 270: 107306, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820504

ABSTRACT

Electrostatic precipitation (ESP) is an attractive low-powered collection mechanism for mobile and fixed aerosol detection of radionuclides (RNs) for Nuclear Explosion Monitoring (NEM). Aerosol samplers deployed in the International Monitoring System use a blower to draw air through a filter media to collect particulates. ESP-based samplers collect aerosols without a filter, which can greatly increase volumetric flow capacity per watt of power consumed. ESP-based collectors may be optimized to perform low-power mobile RN collection or to improve the air throughput of existing monitoring stations. This effort describes the use of unknown concentrations of atmospheric RNs to determine the collection efficiency of a compact ESP design. For this analysis, naturally occurring radon progeny are simultaneously collected by a single stage wire-plate ESP and a filter-based sampler with a known collection efficiency. The activity of resulting samples is measured with gamma-spectroscopy and decay corrected for analysis time offsets. RN collection efficiencies are then derived for an experimental survey of ESP operational parameters that influence the ionization, transit, and collection of aerosols. At volumetric flow rates of 1.5-2 CMM, the optimized collection efficiency was calculated as 21±2%, and slower rates around 0.5 CMM resulted in 55 ±5% collection efficiency. The monitoring performance of the ESP-based collector was assessed for a simplified nuclear explosion source term by calculating the minimal detectable concentrations of short-lived fission & activation products. Results of the study suggest that a low-power ESP is feasible for NEM at distances of 100s of km.


Subject(s)
Radiation Monitoring , Radon Daughters , Radon Daughters/analysis , Static Electricity , Explosions , Aerosols/analysis , Radioisotopes/analysis
2.
J Environ Radioact ; 229-230: 106541, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33493872

ABSTRACT

A novel approach is proposed to detect underground nuclear explosions (UNEs) through the displacement of natural radon isotopes (222Rn and 220Rn). Following an explosion, it is hypothesized that the disturbance and pressurization of the sub-surface would facilitate the movement of radon from the depth of the UNE towards the surface resulting in increased soil gas activity. The resulting signal may be magnified by a factor of 2.0-4.9 by the decay of radon to its short-lived progeny. Increases in background activity may be useful for identifying locations to perform additional measurements, or as a detectable signal at monitoring stations. To validate this hypothesis, radon detection instrumentation was deployed at the Dry Alluvium Geology (DAG) site of the Source Physics Experiment (SPE) at the Nevada National Security Site (NNSS). Natural fluctuations in the soil gas activity due to barometric pumping, and the lower yield of the chemical explosions (1-50 t) made it difficult to confirm a displacement of radon from the explosions, and further study to validate the proposed hypothesis is recommended.


Subject(s)
Radiation Monitoring , Radon , Explosions , Geology , Nevada , Radon/analysis
3.
Appl Radiat Isot ; 126: 185-187, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28318931

ABSTRACT

Low-background lead for radiation measurement shielding is often assayed for 210Pb to ensure acceptable backgrounds. Samples of lead assayed with a germanium spectrometer calibrated for bremsstrahlung-based assay of 210Pb provide a view into the 210Pb content of commercial lead in the U.S. (other than stockpiled Doe Run lead). Results suggest that the loss of lead smelting in the U.S. has eliminated the traditional supply of "low background" lead (~30Bqkg-1), and indicate current commercial supplies contain roughly an order of magnitude higher 210Pb levels.

4.
Appl Radiat Isot ; 126: 9-12, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28017500

ABSTRACT

Argon-39 can be used as a tracer for age-dating glaciers, oceans, and more recently, groundwater. With a half-life of 269 years, 39Ar fills an intermediate age range gap (50-1,000 years) not currently covered by other common groundwater tracers. Therefore, adding this tracer to the data suite for groundwater studies provides an important tool for improving our understanding of groundwater systems. We present the methods employed for arriving at an age-date for a given sample of argon degassed from groundwater.

5.
Appl Radiat Isot ; 126: 171-174, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28017502

ABSTRACT

Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the beta decay spectra. We present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120mg of H2O and present sensitivity results.

6.
Health Phys ; 110(5): 418-26, 2016 May.
Article in English | MEDLINE | ID: mdl-27023029

ABSTRACT

Air sampling systems were deployed to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device Field Trials. The air samplers were positioned 100-600 m downwind of the release point. The filters were collected immediately and analyzed in a field laboratory. Quantities for total activity collected on the air filters are reported along with additional information to compute the average or integrated air concentrations.


Subject(s)
Air Pollutants, Radioactive/analysis , Lanthanum/analysis , Particulate Matter/analysis , Radiation Monitoring , Humans , Radiation Protection
7.
Health Phys ; 110(5): 526-32, 2016 May.
Article in English | MEDLINE | ID: mdl-27023039

ABSTRACT

Atmospheric dispersion theory can be used to predict ground deposition of particulates downwind of a radionuclide release. This paper uses standard formulations found in Gaussian plume models to inform the design of an experimental release of short-lived radioactive particles into the atmosphere. Specifically, a source depletion algorithm is used to determine the optimum particle size and release height that maximizes the near-field deposition while minimizing both the required source activity and the fraction of activity lost to long-distance transport. The purpose of the release is to provide a realistic deposition pattern that might be observed downwind of a small-scale vent from an underground nuclear explosion. The deposition field will be used, in part, to study several techniques of gamma radiation survey and spectrometry that could be used by an On-Site Inspection team investigating such an event.


Subject(s)
Air Pollutants, Radioactive/analysis , Gamma Rays , Models, Theoretical , Radiation Monitoring , Radioactive Hazard Release , Research Design , Atmosphere , Half-Life , Humans
8.
Health Phys ; 110(5): 533-47, 2016 May.
Article in English | MEDLINE | ID: mdl-27023040

ABSTRACT

A radioactive particulate release experiment to produce a near-field ground deposition representative of small-scale venting from an underground nuclear test was conducted to gather data in support of treaty capability development activities. For this experiment, a CO2-driven "air cannon" was used to inject (140)La, a radioisotope of lanthanum with 1.7-d half-life and strong gamma-ray emissions, into the lowest levels of the atmosphere at ambient temperatures. Witness plates and air samplers were laid out in an irregular grid covering the area where the plume was anticipated to deposit based on climatological wind records. This experiment was performed at the Nevada National Security Site, where existing infrastructure, radiological procedures, and support personnel facilitated planning and execution of the work. A vehicle-mounted NaI(Tl) spectrometer and a polyvinyl toluene-based backpack instrument were used to survey the deposited plume. Hand-held instruments, including NaI(Tl) and lanthanum bromide scintillators and high purity germanium spectrometers, were used to take in situ measurements. Additionally, three soil sampling techniques were investigated and compared. The relative sensitivity and utility of sampling and survey methods are discussed in the context of on-site inspection.


Subject(s)
Air Pollutants, Radioactive/analysis , Computer Simulation , Lanthanum/analysis , Nuclear Weapons , Particulate Matter/analysis , Radiation Monitoring , Radioactive Fallout/analysis , Half-Life , Humans , Research Design
9.
Appl Opt ; 54(9): 2413-23, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25968530

ABSTRACT

Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation. For reliable operation, the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processing to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low-background liquid scintillation counters, additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material present in the laboratory and within the instrument's construction materials. Low-background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting (LSC) in a low-background shield. The basic approach to achieve both good light collection and a low-background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high-sensitivity LSC system.

10.
J Radioanal Nucl Chem ; 282(3): 731-735, 2009.
Article in English | MEDLINE | ID: mdl-26224898

ABSTRACT

Aerosol samples collected on filter media were analyzed using HPGe detectors employing varying background-reduction techniques in order to experimentally evaluate the opportunity to apply ultra-low background measurement methods to samples collected, for instance, by the Comprehensive Test Ban Treaty International Monitoring System (IMS). In this way, realistic estimates of the impact of low-background methodology on the sensitivity obtained in systems such as the IMS were assessed. The current detectability requirement of stations in the IMS is 30 µBq/m3 of air for 140Ba, which would imply ~106 fissions per daily sample. Importantly, this is for a fresh aerosol filter. One week of decay reduces the intrinsic background from radon daughters in the sample allowing much higher sensitivity measurement of relevant isotopes, including 131I. An experiment was conducted in which decayed filter samples were measured at a variety of underground locations using Ultra-Low Background (ULB) gamma spectroscopy technology. The impacts of the decay and ULB are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...