Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3277, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627407

ABSTRACT

Uniaxial pressure provides an efficient approach to control charge density waves in YBa2Cu3Oy. It can enhance the correlation volume of ubiquitous short-range two-dimensional charge-density-wave correlations, and induces a long-range three-dimensional charge density wave, otherwise only accessible at large magnetic fields. Here, we use x-ray diffraction to study the strain dependence of these charge density waves and uncover direct evidence for a form of competition between them. We show that this interplay is qualitatively described by including strain effects in a nonlinear sigma model of competing superconducting and charge-density-wave orders. Our analysis suggests that strain stabilizes the 3D charge density wave in the regions between disorder-pinned domains of 2D charge density waves, and that the two orders compete at the boundaries of these domains. No signatures of discommensurations nor of pair density waves are observed. From a broader perspective, our results underscore the potential of strain tuning as a powerful tool for probing competing orders in quantum materials.

2.
Nat Commun ; 14(1): 7042, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37923750

ABSTRACT

The unconventional superconductor Sr2RuO4 has long served as a benchmark for theories of correlated-electron materials. The determination of the superconducting pairing mechanism requires detailed experimental information on collective bosonic excitations as potential mediators of Cooper pairing. We have used Ru L3-edge resonant inelastic x-ray scattering to obtain comprehensive maps of the electronic excitations of Sr2RuO4 over the entire Brillouin zone. We observe multiple branches of dispersive spin and orbital excitations associated with distinctly different energy scales. The spin and orbital dynamical response functions calculated within the dynamical mean-field theory are in excellent agreement with the experimental data. Our results highlight the Hund metal nature of Sr2RuO4 and provide key information for the understanding of its unconventional superconductivity.

3.
Nature ; 617(7959): 73-78, 2023 05.
Article in English | MEDLINE | ID: mdl-37138109

ABSTRACT

In quantum materials, degeneracies and frustrated interactions can have a profound impact on the emergence of long-range order, often driving strong fluctuations that suppress functionally relevant electronic or magnetic phases1-7. Engineering the atomic structure in the bulk or at heterointerfaces has been an important research strategy to lift these degeneracies, but these equilibrium methods are limited by thermodynamic, elastic and chemical constraints8. Here we show that all-optical, mode-selective manipulation of the crystal lattice can be used to enhance and stabilize high-temperature ferromagnetism in YTiO3, a material that shows only partial orbital polarization, an unsaturated low-temperature magnetic moment and a suppressed Curie temperature, Tc = 27 K (refs. 9-13). The enhancement is largest when exciting a 9 THz oxygen rotation mode, for which complete magnetic saturation is achieved at low temperatures and transient ferromagnetism is realized up to Tneq > 80 K, nearly three times the thermodynamic transition temperature. We interpret these effects as a consequence of the light-induced dynamical changes to the quasi-degenerate Ti t2g orbitals, which affect the magnetic phase competition and fluctuations found in the equilibrium state14-20. Notably, the light-induced high-temperature ferromagnetism discovered in our work is metastable over many nanoseconds, underscoring the ability to dynamically engineer practically useful non-equilibrium functionalities.

4.
Phys Rev Lett ; 129(4): 047001, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35938998

ABSTRACT

We use resonant inelastic x-ray scattering to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr_{0.9}La_{0.1}CuO_{2}. We detect a plasmon gap of ∼120 meV at the two-dimensional Brillouin zone center, indicating that low-energy plasmons in Sr_{0.9}La_{0.1}CuO_{2} are not strictly acoustic. The plasmon dispersion, including the gap, is accurately captured by layered t-J-V model calculations. A similar analysis performed on recent resonant inelastic x-ray scattering data from other cuprates suggests that the plasmon gap is generic and its size is related to the magnitude of the interlayer hopping t_{z}. Our work signifies the three dimensionality of the charge dynamics in layered cuprates and provides a new method to determine t_{z}.

5.
Nat Commun ; 13(1): 1486, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35304444

ABSTRACT

The detection and quantification of hydrogen is becoming increasingly important in research on electronic materials and devices, following the identification of the hydrogen content as a potent control parameter for the electronic properties. However, establishing quantitative correlations between the hydrogen content and the physical properties of solids remains a formidable challenge. Here we report neutron reflectometry experiments on 50 nm thick niobium films during hydrogen loading, and show that the momentum-space position of a prominent waveguide resonance allows tracking of the absolute hydrogen content with an accuracy of about one atomic percent on a timescale of less than a minute. Resonance-enhanced neutron reflectometry thus allows fast, direct, and non-destructive measurements of the hydrogen concentration in thin-film structures, with sensitivity high enough for real-time in-situ studies.

6.
Phys Rev Lett ; 127(22): 227201, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34889637

ABSTRACT

Spin-orbit Mott insulators composed of t_{2g}^{4} transition metal ions may host excitonic magnetism due to the condensation of spin-orbital J=1 triplons. Prior experiments suggest that the 4d antiferromagnet Ca_{2}RuO_{4} embodies this notion, but a J=0 nonmagnetic state as a basis of the excitonic picture remains to be confirmed. We use Ru L_{3}-edge resonant inelastic x-ray scattering to reveal archetypal J multiplets with a J=0 ground state in the cubic compound K_{2}RuCl_{6}, which are well described within the LS-coupling scheme. This result highlights the critical role of unquenched orbital moments in 4d-electron compounds and calls for investigations of quantum criticality and excitonic magnetism on various crystal lattices.

7.
Nat Commun ; 12(1): 4512, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34301938

ABSTRACT

α-RuCl3 is a major candidate for the realization of the Kitaev quantum spin liquid, but its zigzag antiferromagnetic order at low temperatures indicates deviations from the Kitaev model. We have quantified the spin Hamiltonian of α-RuCl3 by a resonant inelastic x-ray scattering study at the Ru L3 absorption edge. In the paramagnetic state, the quasi-elastic intensity of magnetic excitations has a broad maximum around the zone center without any local maxima at the zigzag magnetic Bragg wavevectors. This finding implies that the zigzag order is fragile and readily destabilized by competing ferromagnetic correlations. The classical ground state of the experimentally determined Hamiltonian is actually ferromagnetic. The zigzag state is stabilized by quantum fluctuations, leaving ferromagnetism - along with the Kitaev spin liquid - as energetically proximate metastable states. The three closely competing states and their collective excitations hold the key to the theoretical understanding of the unusual properties of α-RuCl3 in magnetic fields.

8.
Phys Rev Lett ; 126(3): 037002, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33543973

ABSTRACT

We report a comprehensive Cu L_{3}-edge resonant x-ray scattering (RXS) study of two- and three-dimensional (2D and 3D) incommensurate charge correlations in single crystals of the underdoped high-temperature superconductor YBa_{2}Cu_{3}O_{6.67} under uniaxial compression up to 1% along the two inequivalent Cu─O─Cu bond directions (a and b) in the CuO_{2} planes. We confirm the strong in-plane anisotropy of the 2D charge correlations and observe their symmetric response to pressure: pressure along a enhances correlations along b, and vice versa. Our results imply that the underlying order parameter is uniaxial. In contrast, 3D long-range charge order is only observed along b in response to compression along a. Spectroscopic RXS measurements show that the 3D charge order resides exclusively in the CuO_{2} planes and may thus be generic to the cuprates. We discuss implications of these results for models of electronic nematicity and for the interplay between charge order and superconductivity.

9.
Nat Commun ; 12(1): 597, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33500415

ABSTRACT

In strongly correlated systems the strength of Coulomb interactions between electrons, relative to their kinetic energy, plays a central role in determining their emergent quantum mechanical phases. We perform resonant x-ray scattering on Bi2Sr2CaCu2O8+δ, a prototypical cuprate superconductor, to probe electronic correlations within the CuO2 plane. We discover a dynamic quasi-circular pattern in the x-y scattering plane with a radius that matches the wave vector magnitude of the well-known static charge order. Along with doping- and temperature-dependent measurements, our experiments reveal a picture of charge order competing with superconductivity where short-range domains along x and y can dynamically rotate into any other in-plane direction. This quasi-circular spectrum, a hallmark of Brazovskii-type fluctuations, has immediate consequences to our understanding of rotational and translational symmetry breaking in the cuprates. We discuss how the combination of short- and long-range Coulomb interactions results in an effective non-monotonic potential that may determine the quasi-circular pattern.

10.
Phys Rev Lett ; 125(23): 237001, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33337199

ABSTRACT

The temperature dependence of the superfluid density ρ_{s}(T) has been measured for a series of ultrathin MBE-grown DyBa_{2}Cu_{3}O_{7-δ} superconducting (SC) films by submillimeter wave interferometry combined with time-domain terahertz spectroscopy and IR ellipsometry. We find that all films 10 u.c. and thicker show the same universal temperature dependence of ρ_{s}(T), which follows the critical behavior characteristic of single crystal YBa_{2}Cu_{3}O_{7-δ} as T approaches T_{c}. In 7 u.c. thick films, ρ_{s}(T) declines steeply upon approaching T_{c}, as expected for the Berezinskii-Kosterlitz-Thouless vortex unbinding transition. Our analysis provides evidence for a sharply defined 4 u.c. non-SC interfacial layer, leaving a quasi-2D SC layer on top. We propose that the SC state in this interfacial layer is suppressed by competing (possibly charge) order.

11.
Phys Rev Lett ; 123(13): 137204, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31697510

ABSTRACT

The electric-current stabilized semimetallic state in the quasi-two-dimensional Mott insulator Ca_{2}RuO_{4} exhibits an exceptionally strong diamagnetism. Through a comprehensive study using neutron and x-ray diffraction, we show that this nonequilibrium phase assumes a crystal structure distinct from those of equilibrium metallic phases realized in the ruthenates by chemical doping, high pressure, and epitaxial strain, which in turn leads to a distinct electronic band structure. Dynamical mean field theory calculations based on the crystallographically refined atomic coordinates and realistic Coulomb repulsion parameters indicate a semimetallic state with partially gapped Fermi surface. Our neutron diffraction data show that the nonequilibrium behavior is homogeneous, with antiferromagnetic long-range order completely suppressed. These results provide a new basis for theoretical work on the origin of the unusual nonequilibrium diamagnetism in Ca_{2}RuO_{4}.

12.
Nat Mater ; 18(6): 563-567, 2019 06.
Article in English | MEDLINE | ID: mdl-30911120

ABSTRACT

Ruthenium compounds serve as a platform for fundamental concepts such as spin-triplet superconductivity1, Kitaev spin liquids2-5 and solid-state analogues of the Higgs mode in particle physics6,7. However, basic questions about the electronic structure of ruthenates remain unanswered, because several key parameters (including Hund's coupling, spin-orbit coupling and exchange interactions) are comparable in magnitude and their interplay is poorly understood, partly due to difficulties in synthesizing large single crystals for spectroscopic experiments. Here we introduce a resonant inelastic X-ray scattering (RIXS)8,9 technique capable of probing collective modes in microcrystals of 4d electron materials. We observe spin waves and spin-state transitions in the honeycomb antiferromagnet SrRu2O6 (ref. 10) and use the extracted exchange interactions and measured magnon gap to explain its high Néel temperature11-16. We expect that the RIXS method presented here will enable momentum-resolved spectroscopy of a large class of 4d transition-metal compounds.

13.
Science ; 362(6418): 1040-1044, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30498124

ABSTRACT

Cuprates exhibit antiferromagnetic, charge density wave (CDW), and high-temperature superconducting ground states that can be tuned by means of doping and external magnetic fields. However, disorder generated by these tuning methods complicates the interpretation of such experiments. Here, we report a high-resolution inelastic x-ray scattering study of the high-temperature superconductor YBa2Cu3O6.67 under uniaxial stress, and we show that a three-dimensional long-range-ordered CDW state can be induced through pressure along the a axis, in the absence of magnetic fields. A pronounced softening of an optical phonon mode is associated with the CDW transition. The amplitude of the CDW is suppressed below the superconducting transition temperature, indicating competition with superconductivity. The results provide insights into the normal-state properties of cuprates and illustrate the potential of uniaxial-pressure control of competing orders in quantum materials.

14.
Nat Commun ; 9(1): 2978, 2018 07 30.
Article in English | MEDLINE | ID: mdl-30061634

ABSTRACT

Incommensurate charge order (CO) has been identified as the leading competitor of high-temperature superconductivity in all major families of layered copper oxides, but the perplexing variety of CO states in different cuprates has confounded investigations of its impact on the transport and thermodynamic properties. The three-dimensional (3D) CO observed in YBa2Cu3O6+x in high magnetic fields is of particular interest, because quantum transport measurements have revealed detailed information about the corresponding Fermi surface. Here we use resonant X-ray scattering to demonstrate 3D-CO in underdoped YBa2Cu3O6+x films grown epitaxially on SrTiO3 in the absence of magnetic fields. The resonance profiles indicate that Cu sites in the charge-reservoir layers participate in the CO state, and thus efficiently transmit CO correlations between adjacent CuO2 bilayer units. The results offer fresh perspectives for experiments elucidating the influence of 3D-CO on the electronic properties of cuprates without the need to apply high magnetic fields.

15.
Nat Mater ; 17(8): 697-702, 2018 08.
Article in English | MEDLINE | ID: mdl-29891891

ABSTRACT

In the underdoped regime, the cuprate high-temperature superconductors exhibit a host of unusual collective phenomena, including unconventional spin and charge density modulations, Fermi surface reconstructions, and a pseudogap in various physical observables. Conversely, overdoped cuprates are generally regarded as conventional Fermi liquids possessing no collective electronic order. In partial contradiction to this widely held picture, we report resonant X-ray scattering measurements revealing incommensurate charge order reflections for overdoped (Bi,Pb)2.12Sr1.88CuO6+δ (Bi2201), with correlation lengths of 40-60 lattice units, that persist up to temperatures of at least 250 K. The value of the charge order wavevector decreases with doping, in line with the extrapolation of the trend previously observed in underdoped Bi2201. In overdoped materials, however, charge order coexists with a single, unreconstructed Fermi surface without nesting or pseudogap features. The discovery of re-entrant charge order in Bi2201 thus calls for investigations in other cuprate families and for a reconsideration of theories that posit an essential relationship between these phenomena.

16.
Phys Rev Lett ; 120(8): 087001, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29543031

ABSTRACT

We report the first determination of the in-plane complex optical conductivity of 1111 high-T_{c} superconducting iron oxypnictide single crystals PrFeAs(O,F) and thin films SmFeAs(O,F) by means of conventional and microfocused infrared spectroscopy, ellipsometry, and time-domain THz transmission spectroscopy. A strong itinerant contribution is found to exhibit a dramatic difference in coherence between the crystal and the film. Using extensive temperature-dependent measurements of THz transmission, we identify a previously undetected 2.5-meV collective mode in the optical conductivity of SmFeAs(O,F), which is strongly suppressed at T_{c} and experiences an anomalous T-linear softening and narrowing below T^{*}≈110 K≫T_{c}. The suppression of the infrared absorption in the superconducting state reveals a large optical superconducting gap with a similar gap ratio 2Δ/k_{B}T_{c}≈7 in both materials, indicating strong pairing.

17.
J Anim Sci ; 96(1): 194-205, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29385459

ABSTRACT

Two feeding trials were conducted to investigate the effects of hydrolyzed (HY) or non-hydrolyzed (NHY) yeast (Kluyveromyces fragilis) in isoenergetic and isonitrogeneous diets in the postweaning period. In experiment 1, a total of 550 unsexed pigs (6.5 ± 0.5 kg BW), weaned at 24 ± 2 d of age, were allocated to five treatment groups, receiving either a control diet (CON) or diets with 1%, 3%, and 5% HY (groups HY1, HY3, and HY5, respectively), or a diet with 3% NHY (group NHY3). In experiment 2, a total of 48 male and female pigs (6.2 ± 0.3 kg BW, weaned at d 25) were allocated to three dietary groups (n = 8 replicates with two pigs) receiving a control diet (CON) or diets with 1% NHY or 1% HY. Eight animals were sacrificed 2 wk after weaning for histological investigations in the jejunum and colon, determination of apparent ileal digestibility (AID) of CP and ether extract (EE), and electrophysiological measurements in the jejunal tissue after addition of carbachol or l-glutamine using Ussing chambers. In experiment 1, different treatments had no significant effect on pig performance, but diet HY1 tended to increase ADG and G:F in wk 2 after weaning (P < 0.1). In experiment 2, diet HY1 increased feed intake in wk 2 (P < 0.05), whereas NHY yeast had no effect on feed intake. Villus height, villus/crypt ratio in jejunum (P < 0.05), and crypt depth in colon (P < 0.01) were increased in group HY1. Crypt depth in jejunum and small intestinal length were not affected by different treatments. The AID of CP and EE tended to increase in group HY1 (P < 0.1) compared with groups CON and NHY. In the Ussing chamber experiments, no changes in basal electrophysiological parameters were observed, and the reactions of the treatment groups to carbachol and l-glutamine were comparable. ADFI was positively correlated with different parameters of intestinal morphology (villus height, villus/crypt ratio, crypt depth in colon, length of small intestine), AID of CP, EE, and performance. The results suggest that a supplementation of 1% HY based on K. fragilis to pig diets may positively influence ADFI and intestinal morphology in pig in the early postweaning period (d 1 to 14).


Subject(s)
Animal Feed/analysis , Eating/drug effects , Kluyveromyces , Swine/physiology , Animals , Diet/veterinary , Female , Intestines/physiology , Male , Random Allocation , Weaning
18.
Phys Rev Lett ; 119(9): 097001, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28949586

ABSTRACT

Spin excitations in the overdoped high temperature superconductors Tl_{2}Ba_{2}CuO_{6+δ} and (Bi,Pb)_{2}(Sr,La)_{2}CuO_{6+δ} were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu-L_{3} absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent of photon energy, similar to prior results on underdoped cuprates. Beyond optimal doping, the RIXS data indicate a sharp crossover to a regime with a strong contribution from incoherent particle-hole excitations whose maximum shows a fluorescencelike shift upon detuning. The spectra of both compound families are closely similar, and their salient features are reproduced by exact-diagonalization calculations of the single-band Hubbard model on a finite cluster. The results are discussed in the light of recent transport experiments indicating a quantum phase transition near optimal doping.

19.
Phys Rev Lett ; 118(20): 207203, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28581806

ABSTRACT

Resonant x-ray scattering at the Dy M_{5} and Ni L_{3} absorption edges was used to probe the temperature and magnetic field dependence of magnetic order in epitaxial LaNiO_{3}-DyScO_{3} superlattices. For superlattices with 2 unit cell thick LaNiO_{3} layers, a commensurate spiral state develops in the Ni spin system below 100 K. Upon cooling below T_{ind}=18 K, Dy-Ni exchange interactions across the LaNiO_{3}-DyScO_{3} interfaces induce collinear magnetic order of interfacial Dy moments as well as a reorientation of the Ni spins to a direction dictated by the strong magnetocrystalline anisotropy of Dy. This transition is reversible by an external magnetic field of 3 T. Tailored exchange interactions between rare-earth and transition-metal ions thus open up new perspectives for the manipulation of spin structures in metal-oxide heterostructures and devices.

20.
Struct Dyn ; 4(4): 044007, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28345009

ABSTRACT

Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.

SELECTION OF CITATIONS
SEARCH DETAIL
...