Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Mol Ther ; 32(5): 1373-1386, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38504517

ABSTRACT

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.


Subject(s)
Alzheimer Disease , Apolipoprotein E2 , Disease Models, Animal , Genetic Therapy , Mice, Transgenic , Microglia , Plaque, Amyloid , Animals , Alzheimer Disease/therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/etiology , Mice , Genetic Therapy/methods , Humans , Apolipoprotein E2/genetics , Apolipoprotein E2/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Microglia/metabolism , Brain/metabolism , Brain/pathology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/therapy , Neuroinflammatory Diseases/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers
2.
Mol Ther Nucleic Acids ; 33: 296-304, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37547292

ABSTRACT

Recombinant adeno-associated viral vectors (rAAVs) are a promising strategy to treat neurodegenerative diseases because of their ability to infect non-dividing cells and confer long-term transgene expression. Despite an ever-growing library of capsid variants, widespread delivery of AAVs in the adult central nervous system remains a challenge. We have previously demonstrated successful distribution of secreted proteins by infection of the ependyma, a layer of post-mitotic epithelial cells lining the ventricles of the brain and central column of the spinal cord, and subsequent protein delivery via the cerebrospinal fluid (CSF). Here we define a functional ependyma promoter to enhance expression from this cell type. Using RNA sequencing on human autopsy samples, we identified disease- and age-independent ependyma gene signatures. Associated promoters were cloned and screened as libraries in mouse and rhesus macaque to reveal cross-species function of a human DNA-derived von Willebrand factor domain containing 3A (VWA3A) promoter. When tested in mice, our VWA3A promoter drove strong, ependyma-localized expression of eGFP and increased secreted ApoE protein levels in the CSF by 2-12× over the ubiquitous iCAG promoter.

3.
bioRxiv ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37645718

ABSTRACT

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do they have a later age of onset, milder clinical course, and less severe neuropathological findings than others with Alzheimer disease. The contrast is especially stark in comparison to the phenotype associated with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, as well as a more aggressive clinical course and notably more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Even one APOE ε2 allele improves phenotype, but it is uncertain if that is due to the replacement of a more toxic allele by APOE ε2, or if APOE ε2 has a protective, neuro-modulatory effect. Here, we demonstrate that brain exposure to APOE2 via a gene therapy approach which bathes the entire cortical mantle in the gene product after transduction of the ependyma, rapidly ameliorates established Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE4. This result suggests a promising protective effect of exogenous APOE2, revealing a cell non-autonomous effect of the protein on microglial activation. We also show that plaque associated microglia in the brain of patients who inherit APOE2 similarly have less microglial reactivity to plaques. These data raise the potential that an APOE2 therapeutic could be effective in Alzheimer disease even in individuals born with the risk ε4 allele. One Sentence Summary: Introduction of ApoE2 using an AAV that transduces the ependymal cells of the ventricle causes a reduction in amyloid load and plaque associated synapse loss, and reduces neuroinflammation by modulating microglial responsiveness to plaques.

5.
Mol Ther Methods Clin Dev ; 25: 333-343, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35573049

ABSTRACT

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease caused by a (CAG) repeat expansion in the coding sequence of ATXN1. The primary mechanism of disease in SCA1 is toxic gain of function by polyglutamine-expanded mutant ATXN1 and is compounded by partial loss of wild-type function. Addressing both disease mechanisms, we have shown that virally expressed RNA interference targeting ATXN1 can both prevent and reverse disease phenotypes in SCA1 mice, and that overexpression of the ATXN1 homolog, ataxin 1-like (ATXN1L), improves disease readouts when delivered pre-symptomatically. Here, we combined these therapeutic approaches into two, dual component recombinant adeno-associated virus (rAAV) vectors and tested their ability to reverse disease in symptomatic SCA1 mice using behavior, pathological, and next-generation sequencing assays. Mice treated with vectors expressing human ATXN1L (hATXN1L) alone showed motor improvements and changes in gene expression that reflected increases in pro-development pathways. When hATN1L was combined with miS1, a previously validated microRNA targeting h ATXN1, there was added normalization of disease allele-induced changes in gene expression along with motor improvements. Our data show the additive nature of this two-component approach for a more effective SCA1 therapy.

6.
Nat Med ; 27(11): 1982-1989, 2021 11.
Article in English | MEDLINE | ID: mdl-34663988

ABSTRACT

RNA interference (RNAi) for spinocerebellar ataxia type 1 can prevent and reverse behavioral deficits and neuropathological readouts in mouse models, with safety and benefit lasting over many months. The RNAi trigger, expressed from adeno-associated virus vectors (AAV.miS1), also corrected misregulated microRNAs (miRNA) such as miR150. Subsequently, we showed that the delivery method was scalable, and that AAV.miS1 was safe in short-term pilot nonhuman primate (NHP) studies. To advance the technology to patients, investigational new drug (IND)-enabling studies in NHPs were initiated. After AAV.miS1 delivery to deep cerebellar nuclei, we unexpectedly observed cerebellar toxicity. Both small-RNA-seq and studies using AAVs devoid of miRNAs showed that this was not a result of saturation of the endogenous miRNA processing machinery. RNA-seq together with sequencing of the AAV product showed that, despite limited amounts of cross-packaged material, there was substantial inverted terminal repeat (ITR) promoter activity that correlated with neuropathologies. ITR promoter activity was reduced by altering the miS1 expression context. The surprising contrast between our rodent and NHP findings highlight the need for extended safety studies in multiple species when assessing new therapeutics for human application.


Subject(s)
Dependovirus/genetics , Drug Carriers/administration & dosage , Genetic Therapy/methods , MicroRNAs/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy , Animals , Animals, Genetically Modified , Brain Stem/pathology , Cerebellum/pathology , Female , Macaca mulatta , Male , Mice , Promoter Regions, Genetic/genetics , RNA Interference , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA-Seq , Terminal Repeat Sequences/genetics
7.
Curr Protoc Mouse Biol ; 8(4): e58, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30485696

ABSTRACT

Viral vectors are a promising tool for effective delivery of genetic material into cells. They take advantage of the natural ability of a virus to deliver a genetic payload into cells while being genetically modified such that their ability to replicate is crippled or removed. Here, an updated overview of routinely used viral vectors, including adeno-associated viruses (AAV), retroviruses/lentiviruses, and adenoviruses (Ads), is provided, as well as perspectives on their advantages and disadvantages in research and gene therapy. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Animals , Disease Models, Animal , Mice
8.
Curr Protoc Mouse Biol ; 8(4): e56, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30489697

ABSTRACT

Adeno-associated virus (AAV) vectors are exemplary tools for studying gene function in vivo and are particularly favorable for transferring genes of interest into brain tissues. They have shown great promise as a gene therapy vector for preclinical and clinical applications. However, the ability to use this tool is often hampered because the viruses themselves are not readily available. Many methods have been developed for AAV production. Here, we describe a simple method for small- to medium-scale (1012 -1013 viral particles) production of AAV based on Polyethylenimine Max (PEI Max)-mediated triple transfection of HEK 293 cells and purification with iodixanol gradient ultracentrifugation. These methods will provide users with ample material of sufficient quality for performing in vivo gene transfer. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Centrifugation, Density Gradient , Contrast Media/chemistry , Dependovirus/growth & development , Polyethyleneimine/chemistry , Transfection , Triiodobenzoic Acids/chemistry , Virus Cultivation/methods , Animals , Dependovirus/isolation & purification , Disease Models, Animal , HEK293 Cells , Humans , Mice
9.
Curr Protoc Mouse Biol ; 8(4): e57, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30395418

ABSTRACT

Stereotaxic intracranial injection of viral vectors is a valuable technique to directly deliver genetic material to a specific population of cells in the central nervous system of a mouse model. This enables scientists to test candidate gene therapies or disease modulators that can then provide insight into the pathological mechanisms of disease. In this article, we present a standardized method of conducting intracranial stereotaxic injection of adeno-associated virus into a specific brain region in a mouse model. Support protocols are provided for virus dialysis and testing new stereotaxic coordinates with dye. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Dependovirus/genetics , Genetic Vectors/administration & dosage , Injections/methods , Stereotaxic Techniques , Animals , Brain/metabolism , Disease Models, Animal , Mice , Transgenes
10.
Hum Mol Genet ; 27(24): 4303-4314, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30239724

ABSTRACT

Polyglutamine (polyQ) repeat diseases are a class of neurodegenerative disorders caused by CAG-repeat expansion. There are diverse cellular mechanisms behind the pathogenesis of polyQ disorders, including transcriptional dysregulation. Interestingly, we find that levels of the long isoform of nuclear paraspeckle assembly transcript 1 (Neat1L) are elevated in the brains of mouse models of spinocerebellar ataxia types 1, 2, 7 and Huntington's disease (HD). Neat1L was also elevated in differentiated striatal neurons derived from HD knock-in mice and in HD patient brains. The elevation was mutant Huntingtin (mHTT) dependent, as knockdown of mHTT in vitro and in vivo restored Neat1L to normal levels. In additional studies, we found that Neat1L is repressed by methyl CpG binding protein 2 (MeCP2) by RNA-protein interaction but not by occupancy of MeCP2 at its promoter. We also found that NEAT1L overexpression protects from mHTT-induced cytotoxicity, while reducing it enhanced mHTT-dependent toxicity. Gene set enrichment analysis of previously published RNA sequencing data from mouse embryonic fibroblasts and cells derived from HD patients shows that loss of NEAT1L impairs multiple cellular functions, including pathways involved in cell proliferation and development. Intriguingly, the genes dysregulated in HD human brain samples overlap with pathways affected by a reduction in NEAT1, confirming the correlation of NEAT1L and HD-induced perturbations. Cumulatively, the role of NEAT1L in polyQ disease model systems and human tissues suggests that it may play a protective role in CAG-repeat expansion diseases.


Subject(s)
Huntington Disease/genetics , Methyl-CpG-Binding Protein 2/genetics , RNA, Long Noncoding/genetics , Spinocerebellar Ataxias/genetics , Alternative Splicing/genetics , Animals , Cell Differentiation/genetics , Corpus Striatum/metabolism , Corpus Striatum/pathology , Gene Knock-In Techniques , Humans , Huntingtin Protein/genetics , Huntington Disease/physiopathology , Mice , Neurons/metabolism , Neurons/pathology , Peptides/genetics , Promoter Regions, Genetic , Protein Isoforms/genetics , RNA-Binding Proteins/genetics , Spinocerebellar Ataxias/physiopathology , Trinucleotide Repeat Expansion/genetics
11.
Front Neurol ; 8: 13, 2017.
Article in English | MEDLINE | ID: mdl-28197125

ABSTRACT

α-Synuclein is postulated to play a key role in the pathogenesis of Parkinson's disease (PD). Aggregates of α-synuclein contribute to neurodegeneration and cell death in humans and in mouse models of PD. Here, we use virally mediated RNA interference to knockdown human α-synuclein in mice. We used an siRNA design algorithm to identify eight siRNA sequences with minimal off-targeting potential. One RNA-interference sequence (miSyn4) showed maximal protein knockdown potential in vitro. We then designed AAV vectors expressing miSyn4 and injected them into the mouse substantia nigra. miSyn4 was robustly expressed and did not detectably change dopamine neurons, glial proliferation, or mouse behavior. We then injected AAV2-miSyn4 into Thy1-hSNCA mice over expressing α-synuclein and found decreased human α-synuclein (hSNCA) in both midbrain and cortex. In separate mice, co-injection of AAV2-hSNCA and AAV2-miSyn4 demonstrated decreased hSNCA expression and rescue of hSNCA-mediated behavioral deficits. These data suggest that virally mediated RNA interference can knockdown hSNCA in vivo, which could be helpful for future therapies targeting human α-synuclein.

12.
Mol Ther ; 25(1): 12-23, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28129107

ABSTRACT

Huntington disease (HD) is a fatal dominantly inherited neurodegenerative disorder caused by CAG repeat expansion (>36 repeats) within the first exon of the huntingtin gene. Although mutant huntingtin (mHTT) is ubiquitously expressed, the brain shows robust and early degeneration. Current RNA interference-based approaches for lowering mHTT expression have been efficacious in mouse models, but basal mutant protein levels are still detected. To fully mitigate expression from the mutant allele, we hypothesize that allele-specific genome editing can occur via prevalent promoter-resident SNPs in heterozygosity with the mutant allele. Here, we identified SNPs that either cause or destroy PAM motifs critical for CRISPR-selective editing of one allele versus the other in cells from HD patients and in a transgenic HD model harboring the human allele.


Subject(s)
Alleles , CRISPR-Cas Systems , Gene Editing , Huntingtin Protein/genetics , Huntington Disease/genetics , Mutation , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9 , Clustered Regularly Interspaced Short Palindromic Repeats , Disease Models, Animal , Endonucleases/genetics , Endonucleases/metabolism , Exons , Fibroblasts , Gene Order , Gene Silencing , Humans , Mice , Mice, Transgenic , Nucleotide Motifs , Plasmids/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida
13.
Ann Neurol ; 80(5): 754-765, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27686464

ABSTRACT

OBJECTIVE: Spinocerebellar ataxia type 1 is an autosomal dominant fatal neurodegenerative disease caused by a polyglutamine expansion in the coding region of ATXN1. We showed previously that partial suppression of mutant ataxin-1 (ATXN1) expression, using virally expressed RNAi triggers, could prevent disease symptoms in a transgenic mouse model and a knockin mouse model of the disease, using a single dose of virus. Here, we set out to test whether RNAi triggers targeting ATXN1 could not only prevent, but also reverse disease readouts when delivered after symptom onset. METHODS: We administered recombinant adeno-associated virus (rAAV) expressing miS1, an artificial miRNA targeting human ATXN1 mRNA (rAAV.miS1), to a mouse model of spinocerebellar ataxia type 1 (SCA1; B05 mice). Viruses were delivered prior to or after symptom onset at multiple doses. Control B05 mice were treated with rAAVs expressing a control artificial miRNA, or with saline. Animal behavior, molecular phenotypes, neuropathology, and magnetic resonance spectroscopy were done on all groups, and data were compared to wild-type littermates. RESULTS: We found that SCA1 phenotypes could be reversed by partial suppression of human mutant ATXN1 mRNA by rAAV.miS1 when delivered after symptom onset. We also identified the therapeutic range of rAAV.miS1 that could prevent or reverse disease readouts. INTERPRETATION: SCA1 disease may be reversible by RNAi therapy, and the doses required for advancing this therapy to humans are delineated. Ann Neurol 2016;80:754-765.


Subject(s)
Ataxin-1/metabolism , Genetic Therapy/methods , Genetic Vectors , RNA Interference , Spinocerebellar Ataxias/physiopathology , Spinocerebellar Ataxias/therapy , Animals , Behavior, Animal , Dependovirus , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mice, Transgenic , Phenotype , RNA, Messenger , Spinocerebellar Ataxias/prevention & control
14.
Hum Mol Genet ; 25(R1): R53-64, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26503961

ABSTRACT

RNA-targeting approaches are emerging as viable therapeutics that offer an alternative method to modulate traditionally 'undrugable' targets. In the case of dominantly inherited neurodegenerative diseases, gene suppression strategies can target the underlying cause of these intractable disorders. Polyglutamine diseases are caused by CAG expansions in discrete genes, making them ideal candidates for gene suppression therapies. Here, we discuss the current state of gene suppression approaches for Huntington's disease and the spinocerebellar ataxias, including the use of antisense oligonucleotides, short-interfering RNAs, as well as viral vector-mediated delivery of short hairpin RNAs and artificial microRNAs. We focus on lessons learned from preclinical studies investigating gene suppression therapies for these disorders, particularly in rodent models of disease and in non-human primates. In animal models, recent advances in gene suppression technologies have not only prevented disease progression in a number of cases, but have also reversed existing disease, providing evidence that reducing the expression of disease-causing genes may be of benefit in symptomatic patients. Both allele- and non-allele-specific approaches to gene suppression have made great strides over the past decade, showing efficacy and safety in both small and large animal models. Advances in delivery techniques allow for broad and durable suppression of target genes, have been validated in non-human primates and in some cases, are currently being evaluated in human patients. Finally, we discuss the challenges of developing and delivering gene suppression constructs into the CNS and recent advances of potential therapeutics into the clinic.


Subject(s)
Genes, Dominant , Huntington Disease/genetics , Spinocerebellar Ataxias/genetics , Animals , Humans , RNA Interference , RNA, Messenger/metabolism
15.
Brain ; 138(Pt 12): 3555-66, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26490326

ABSTRACT

Spinocerebellar ataxia type 1 is one of nine polyglutamine expansion diseases and is characterized by cerebellar ataxia and neuronal degeneration in the cerebellum and brainstem. Currently, there are no effective therapies for this disease. Previously, we have shown that RNA interference mediated silencing of ATXN1 mRNA provides therapeutic benefit in mouse models of the disease. Adeno-associated viral delivery of an engineered microRNA targeting ATXN1 to the cerebella of well-established mouse models improved motor phenotypes, neuropathy, and transcriptional changes. Here, we test the translatability of this approach in adult rhesus cerebella. Nine adult male and three adult female rhesus macaque were unilaterally injected with our therapeutic vector, a recombinant adeno-associated virus type 1 (rAAV1) expressing our RNAi trigger (miS1) and co-expressing enhanced green fluorescent protein (rAAV1.miS1eGFP) into the deep cerebellar nuclei using magnetic resonance imaging guided techniques combined with a Stealth Navigation system (Medtronics Inc.). Transduction was evident in the deep cerebellar nuclei, cerebellar Purkinje cells, the brainstem and the ventral lateral thalamus. Reduction of endogenous ATXN1 messenger RNA levels were ≥30% in the deep cerebellar nuclei, the cerebellar cortex, inferior olive, and thalamus relative to the uninjected hemisphere. There were no clinical complications, and quantitative and qualitative analyses suggest that this therapeutic intervention strategy and subsequent reduction of ATXN1 is well tolerated. Collectively the data illustrate the biodistribution and tolerability of rAAV1.miS1eGFP administration to the adult rhesus cerebellum and are supportive of clinical application for spinocerebellar ataxia type 1.


Subject(s)
Ataxin-1/deficiency , Cerebellar Nuclei/metabolism , Genetic Therapy/methods , RNA Interference , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy , Animals , Ataxin-1/genetics , Brain Stem/metabolism , Dependovirus , Female , Macaca mulatta , Male , Purkinje Cells/metabolism , Thalamus/metabolism , Transduction, Genetic
16.
Mol Ther ; 22(3): 588-595, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24419082

ABSTRACT

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant, late-onset neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the ataxin-1 protein, which causes progressive neurodegeneration in cerebellar Purkinje cells and brainstem nuclei. Here, we tested if reducing mutant ataxin-1 expression would significantly improve phenotypes in a knock-in (KI) mouse model that recapitulates spatial and temporal aspects of SCA1. Adeno-associated viruses (AAVs), expressing inhibitory RNAs targeting ataxin-1, were injected into the deep cerebellar nuclei (DCN) of KI mice. This approach induced ataxin-1 suppression in the cerebellar cortex and in brainstem neurons. RNA interference (RNAi) of ataxin-1 preserved cerebellar lobule integrity and prevented disease-related transcriptional changes for over a year. Notably, RNAi therapy also preserved rotarod performance and neurohistology. These data suggest that delivery of AAVs encoding RNAi sequences against ataxin-1, to DCN alone, may be sufficient for SCA1 therapy.


Subject(s)
Cerebellar Cortex/metabolism , Cerebellar Nuclei/virology , Genetic Vectors/administration & dosage , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Neurons/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , RNA Interference , Spinocerebellar Ataxias/pathology , Animals , Ataxin-1 , Ataxins , Dependovirus/genetics , Disease Models, Animal , Female , Gene Knock-In Techniques , Humans , Male , Mice , Mice, Inbred C57BL , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy
17.
Neurotherapeutics ; 10(3): 473-85, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23589092

ABSTRACT

Over the last decade, RNA interference technology has shown therapeutic promise in rodent models of dominantly inherited brain diseases, including those caused by polyglutamine repeat expansions in the coding region of the affected gene. For some of these diseases, proof-of concept studies in model organisms have transitioned to safety testing in larger animal models, such as the nonhuman primate. Here, we review recent progress on RNA interference-based therapies in various model systems. We also highlight outstanding questions or concerns that have emerged as a result of an improved (and ever advancing) understanding of the technologies employed.


Subject(s)
Central Nervous System Diseases/therapy , RNA Interference , RNA/therapeutic use , Animals , Disease Models, Animal , Humans
18.
Neurobiol Dis ; 56: 6-13, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23583610

ABSTRACT

Spinocerebellar Ataxia Type 1 (SCA1) is an autosomal dominant late onset neurodegenerative disease caused by an expanded polyglutamine tract in ataxin-1. Here, we compared the protective effects of overexpressing ataxin-1-like using recombinant AAVs, or reducing expression of mutant ataxin-1 using virally delivered RNA interference (RNAi), in a transgenic mouse model of SCA1. For the latter, we used an artificial microRNA (miR) design that optimizes potency, efficacy and safety to suppress ataxin-1 expression (miS1). Delivery of either ataxin-1-like or miS1 viral vectors to SCA1 mice cerebella resulted in widespread cerebellar Purkinje cell transduction and improved behavioral and histological phenotypes. Our data indicate the utility of either approach as a possible therapy for SCA1 patients.


Subject(s)
Nerve Tissue Proteins/biosynthesis , Nuclear Proteins/biosynthesis , RNA Interference/physiology , Spinocerebellar Ataxias/therapy , Animals , Ataxin-1 , Ataxins , Behavior, Animal/physiology , Blotting, Western , Brain/pathology , Dependovirus/genetics , Gait/physiology , Genetic Vectors , HEK293 Cells , Humans , Immunohistochemistry , Immunoprecipitation , In Situ Hybridization , Locomotion/physiology , Mice , Mice, Transgenic , MicroRNAs/biosynthesis , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Plasmids , Postural Balance/physiology , RNA, Small Interfering/therapeutic use , Real-Time Polymerase Chain Reaction , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...