Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Small ; : e2310540, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597766

ABSTRACT

Engineered nanomaterials offer numerous benefits to society ranging from environmental remediation to biomedical applications such as drug or vaccine delivery as well as clean and cost-effective energy production and storage, and the promise of a more sustainable way of life. However, as nanomaterials of increasing sophistication enter the market, close attention to potential adverse effects on human health and the environment is needed. Here a critical perspective on nanotoxicological research is provided; the authors argue that it is time to leverage the knowledge regarding the biological interactions of nanomaterials to achieve a more comprehensive understanding of the human health and environmental impacts of these materials. Moreover, it is posited that nanomaterials behave like biological entities and that they should be regulated as such.

2.
ACS Agric Sci Technol ; 4(4): 507-520, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38638683

ABSTRACT

This manuscript presents a multiomics investigation into the metabolic and proteomic responses of wheat to molybdenum (Mo)- and copper (Cu)-based engineered nanomaterials (ENMs) exposure via root and leaf application methods. Wheat plants underwent a four-week growth period with a 16 h photoperiod (light intensity set at 150 µmol·m-2·s-1), at 22 °C and 60% humidity. Six distinct treatments were applied, including control conditions alongside exposure to Mo- and Cu-based ENMs through both root and leaf routes. The exposure dosage amounted to 6.25 mg of the respective element per plant. An additional treatment with a lower dose (0.6 mg Mo/plant) of Mo ENM exclusively through the root system was introduced upon the detection of phytotoxicity. Utilizing LC-MS/MS analysis, 82 metabolites across various classes and 24 proteins were assessed in different plant tissues (roots, stems, leaves) under diverse treatments. The investigation identified 58 responsive metabolites and 19 responsive proteins for Cu treatments, 71 responsive metabolites, and 24 responsive proteins for Mo treatments, mostly through leaf exposure for Cu and root exposure for Mo. Distinct tissue-specific preferences for metabolite accumulation were revealed, highlighting the prevalence of organic acids and fatty acids in stem or root tissues, while sugars and amino acids were abundant in leaves, mirroring their roles in energy storage and photosynthesis. Joint-pathway analysis was conducted and unveiled 23 perturbed pathways across treatments. Among these, Mo exposure via roots impacted all identified pathways, whereas exposure via leaf affected 15 pathways, underscoring the reliance on exposure route of metabolic and proteomic responses. The coordinated response observed in protein and metabolite concentrations, particularly in amino acids, highlighted a dynamic and interconnected proteomic-to-metabolic-to-proteomic relationship. Furthermore, the contrasting expression patterns observed in glutamate dehydrogenase (upregulation at 1.38 ≤ FC ≤ 1.63 with high Mo dose, and downregulation at 0.13 ≤ FC ≤ 0.54 with low Mo dose) and its consequential impact on glutamine expression (7.67 ≤ FC ≤ 39.60 with high Mo dose and 1.50 ≤ FC ≤ 1.95 with low Mo dose) following Mo root exposure highlighted dose-dependent regulatory trends influencing proteins and metabolites. These findings offer a multidimensional understanding of plant responses to ENMs exposure, guiding agricultural practices and environmental safety protocols while advancing knowledge on nanomaterial impacts on plant biology.

3.
ACS Agric Sci Technol ; 4(1): 103-117, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38239573

ABSTRACT

In this study, we investigated the effects of molybdenum (Mo)-based nanofertilizer and copper (Cu)-based nanopesticide exposure on wheat through a multifaceted approach, including physiological measurements, metal uptake and translocation analysis, and targeted proteomics analysis. Wheat plants were grown under a 16 h photoperiod (light intensity 150 µmol·m-2·s-1) for 4 weeks at 22 °C and 60% humidity with 6 different treatments, including control, Mo, and Cu exposure through root and leaf. The exposure dose was 6.25 mg of element per plant through either root or leaf. An additional low-dose (0.6 mg Mo/plant) treatment of Mo through root was added after phytotoxicity was observed. Using targeted proteomics approach, 24 proteins involved in 12 metabolomic pathways were quantitated to understand the regulation at the protein level. Mo exposure, particularly through root uptake, induced significant upregulation of 16 proteins associated with 11 metabolic pathways, with the fold change (FC) ranging from 1.28 to 2.81. Notably, a dose-dependent response of Mo exposure through the roots highlighted the delicate balance between nutrient stimulation and toxicity as a high Mo dose led to robust protein upregulation but also resulted in depressed physiological measurements, while a low Mo dose resulted in no depression of physiological measurements but downregulations of proteins, especially in the first leaf (0.23 < FC < 0.68) and stem (0.13 < FC < 0.68) tissues. Conversely, Cu exposure exhibited tissue-specific effects, with pronounced downregulation (18 proteins involved in 11 metabolic pathways) particularly in the first leaf tissues (root exposure: 0.35 < FC < 0.74; leaf exposure: 0.49 < FC < 0.72), which indicated the quick response of plants to Cu-induced stress in the early stage of exposure. By revealing the complexities of plants' response to engineered nanomaterials at both physiological and molecular levels, this study provides insights for optimizing nutrient management practices in crop production and advancing toward sustainable agriculture.

4.
NanoImpact ; 33: 100496, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38266914

ABSTRACT

There have been major advances in the science to predict the likely environmental concentrations of nanomaterials, which is a key component of exposure and subsequent risk assessment. Considerable progress has been since the first Material Flow Analyses (MFAs) in 2008, which were based on very limited information, to more refined current tools that take into account engineered nanoparticle (ENP) size distribution, form, dynamic release, and better-informed release factors. These MFAs provide input for all environmental fate models (EFMs), that generate estimates of particle flows and concentrations in various environmental compartments. While MFA models provide valuable information on the magnitude of ENP release, they do not account for fate processes, such as homo- and heteroaggregation, transformations, dissolution, or corona formation. EFMs account for these processes in differing degrees. EFMs can be divided into multimedia compartment models (e.g., atmosphere, waterbodies and their sediments, soils in various landuses), of which there are currently a handful with varying degrees of complexity and process representation, and spatially-resolved watershed models which focus on the water and sediment compartments. Multimedia models have particular applications for considering predicted environmental concentrations (PECs) in particular regions, or for developing generic "fate factors" (i.e., overall persistence in a given compartment) for life-cycle assessment. Watershed models can track transport and eventual fate of emissions into a flowing river, from multiple sources along the waterway course, providing spatially and temporally resolved PECs. Both types of EFMs can be run with either continuous sources of emissions and environmental conditions, or with dynamic emissions (e.g., temporally varying for example as a new nanomaterial is introduced to the market, or with seasonal applications), to better understand the situations that may lead to peak PECs that are more likely to result in exceedance of a toxicological threshold. In addition, bioaccumulation models have been developed to predict the internal concentrations that may accumulate in exposed organisms, based on the PECs from EFMs. The main challenge for MFA and EFMs is a full validation against observed data. To date there have been no field studies that can provide the kind of dataset(s) needed for a true validation of the PECs. While EFMs have been evaluated against a few observations in a small number of locations, with results that indicate they are in the right order of magnitude, there is a great need for field data. Another major challenge is the input data for the MFAs, which depend on market data to estimate the production of ENPs. The current information has major gaps and large uncertainties. There is also a lack of robust analytical techniques for quantifying ENP properties in complex matrices; machine learning may be able to fill this gap. Nevertheless, there has been major progress in the tools for generating PECs. With the emergence of nano- and microplastics as a leading environmental concern, some EFMs have been adapted to these materials. However, caution is needed, since most nano- and microplastics are not engineered, therefore their characteristics are difficult to generalize, and there are new fate and transport processes to consider.


Subject(s)
Microplastics , Nanostructures , Plastics , Models, Theoretical , Risk Assessment
5.
J Hazard Mater ; 465: 133245, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38150761

ABSTRACT

Mercury is a hazardous pollutant of global concern. While advances have been made in identifying the detrimental effects caused by Hg species in phytoplankton, knowledge gaps remain regarding the metabolomic perturbations induced by inorganic mercury (Hg(II)) and monomethylmercury (MeHg) in these organisms. Diatoms represent a major phytoplankton group essential in various global biogeochemical cycles. The current study combined targeted metabolomics, bioaccumulation, and physiological response assays to investigate metabolic perturbations in diatom Cyclotella meneghiniana exposed for 2 h to nanomolar concentrations of Hg(II) and MeHg. Our findings highlight that such exposures induce reprogramming of the metabolism of amino acids, nucleotides, fatty acids, carboxylic acids and antioxidants. These alterations were primarily mercury-species dependent. MeHg exposure induced more pronounced reprogramming of the metabolism of diatoms than Hg(II), which led to less pronounced effects on ROS generation, membrane permeability and chlorophyll concentrations. Hg(II) treatments presented distinct physiological responses, with more robust metabolic perturbations at higher exposures. The present study provides first-time insights into the main metabolic alterations in diatom C. meneghiniana during short-term exposure to Hg species, deepening our understanding of the molecular basis of these perturbations.


Subject(s)
Diatoms , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Mercury/analysis , Methylmercury Compounds/metabolism , Metabolic Reprogramming , Phytoplankton , Fresh Water , Water Pollutants, Chemical/metabolism
6.
Int J Cosmet Sci ; 45 Suppl 1: 127-140, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37799081

ABSTRACT

Inorganic nanomaterials such as TiO2 and ZnO provide significant benefits in terms of UV protection, and their use generally has increased in commercial sunscreens. However, more recently there have been concerns about their potential human and ecological health implications, mostly driven by perception rather than by formal assessments. The large and increasing body of literature on these nanomaterials indicates that in most circumstances their risk are minimal. Penetration of the human epidermis is minimal for these nanomaterials, significantly reducing the potential effects that these nanomaterials may pose to internal organs. The excess Zn ion dose is very small compared to normal dietary consumption of Zn, which is a necessary element. The levels of residual nanomaterials or released ions in public swimming pools is also low, with minimal effect in case this water is ingested during swimming or bathing. In natural environments with significant water flow due to wind and water currents, the concentrations of nanomaterials and released ions are generally well below levels that would cause effects in aquatic organisms. However, sensitive habitats with slow currents, such as coral reefs, may accumulate these nanomaterials. The number of studies of the levels and effects of nanomaterials in these sensitive habitats is very small; more research is needed to determine if there is an elevated risk to these ecosystems from the use of sunscreens with these nanomaterials.


Les nanomatériaux inorganiques, comme le dioxyde de titane (TiO2 ) et l'oxyde de zinc (ZnO), offrent des avantages significatifs en ce qui concerne la protection UV, et leur utilisation a généralement augmenté dans les protections solaires commerciales. Cependant, plus récemment, il y a eu des préoccupations concernant leurs implications potentielles sur la santé humaine et écologique, motivées principalement par la perception plutôt que par des évaluations formelles. L'importante quantité croissante de littérature sur ces nanomatériaux indique que dans la plupart des circonstances, leur risque est minime. La pénétration dans l'épiderme humain est minimale pour ces nanomatériaux, ce qui réduit significativement les effets potentiels de ces nanomatériaux sur les organes internes. La dose d'ions Zn en excès est très faible par rapport à la consommation alimentaire normale de Zn, qui est un élément nécessaire. Les niveaux de nanomatériaux résiduels ou d'ions libérés dans les piscines publiques sont également faibles, avec un effet minime dans le cas où cette eau est ingérée pendant la natation ou la baignade. Dans les environnements naturels caractérisés par un flux d'eau important en raison de courants éoliens et de courants aquatiques, les concentrations de nanomatériaux et d'ions libérés sont généralement nettement inférieures aux niveaux qui pourraient avoir des effets sur les organismes aquatiques. En revanche, des habitats sensibles à courants lents, comme les récifs coralliens, peuvent accumuler ces nanomatériaux. Le nombre d'études sur les niveaux et les effets des nanomatériaux dans ces habitats sensibles est très faible. Des recherches supplémentaires sont nécessaires pour déterminer s'il existe un risque élevé pour ces écosystèmes lié à l'utilisation de crèmes solaires comportant ces nanomatériaux.


Subject(s)
Nanostructures , Sunscreening Agents , Humans , Ecosystem , Water , Ions
7.
Water Sci Technol ; 88(5): 1143-1154, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37771219

ABSTRACT

This review provides a current opinion on the most recent works that have been published toward the application of electrochemical advance oxidation processes (EAOPs) for the degradation of pharmaceutical and personal care products (PPCPs) in water streams. Advances in the application of anodic oxidation (AO)- and electro-Fenton (EF)-based processes are reported, including operational conditions, electrode performance, and removal. Although AO- and EF-based processes can easily reach 100% removal of PPCPs, mineralization is desirable to avoid the generation of potential toxic byproducts. The following section exploring some techno-economic aspects of the application of EAOPs is based on electrode selection, operational costs as well as their use as cotreatments, and their synergistic effects. Finally, this short review ends with perspectives about the emerging topics that are faced by these technologies applied for the degradation of PPCPs in research and practice.


Subject(s)
Cosmetics , Water Pollutants, Chemical , Wastewater , Water Pollutants, Chemical/analysis , Hydrogen Peroxide , Oxidation-Reduction , Electrodes , Pharmaceutical Preparations
9.
ACS Agric Sci Technol ; 3(5): 421-431, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37206883

ABSTRACT

This study was conducted to optimize a targeted plant proteomics approach from signature peptide selection and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analytical method development and optimization to sample preparation method optimization. Three typical protein extraction and precipitation methods, including trichloroacetic acid (TCA)/acetone method, phenol method, and TCA/acetone/phenol method, and two digestion methods, including trypsin digestion and LysC/trypsin digestion, were evaluated for selected proteins related to the impact of engineered nanomaterials (ENMs) on wheat (Triticum aestivum) plant growth. In addition, we compared two plant tissue homogenization methods: grinding freeze-dried tissue and fresh tissue into a fine powder using a mortar and pestle aided with liquid nitrogen. Wheat plants were grown under a 16 h photoperiod (light intensity 150 µmol·m-2·s-1) for 4 weeks at 22 °C with a relative humidity of 60% and were watered daily to maintain a 70-90% water content in the soil. Processed samples were analyzed with an optimized LC-MS/MS method. The concentration of selected signature peptides for the wheat proteins of interest indicated that the phenol extraction method using fresh plant tissue, coupled with trypsin digestion, was the best sample preparation method for the targeted proteomics study. Overall, the optimized approach yielded the highest total peptide concentration (68,831 ng/g, 2.4 times the lowest concentration) as well as higher signature peptide concentrations for most peptides (19 out of 28). In addition, three of the signature peptides could only be detected using the optimized approach. This study provides a workflow for optimizing targeted proteomics studies.

10.
Water Res ; 236: 119924, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37030197

ABSTRACT

The coexistence of pharmaceuticals and heavy metals is regarded as a serious threat to aquatic environments. Adsorbents have been widely applied to the simultaneous removal of pharmaceuticals and metals from aqueous phase. Through a comprehensive review, behaviors that promote, inhibit, or have no effect on simultaneous adsorption of pharmaceuticals and heavy metals were found to depend on the system of contaminants and adsorbents and their environmental conditions, such as: characteristics of adsorbent and pollutant, temperature, pH, inorganic ions, and natural organic matter. Bridging and competition effects are the main reasons for promoting and inhibiting adsorption in coexisting systems, respectively. The promotion is more significant in neutral or alkaline conditions. After simultaneous adsorption, a solvent elution approach was most commonly used for regeneration of saturated adsorbents. To conclude, this work could help to sort out the theoretical knowledge in this field, and may provide new insights into the prevention and control of pharmaceuticals and heavy metals coexisting in wastewater.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/analysis , Wastewater , Water , Pharmaceutical Preparations
11.
Environ Sci Technol ; 57(17): 6989-6998, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37083408

ABSTRACT

Environmental conditions in aquatic ecosystems transform toxic chemicals over time, influencing their bioavailability and toxicity. Using an environmentally relevant methodology, we tested how exposure to seawater for 1-15 weeks influenced the accumulation and toxicity of copper nanoparticles (nano-Cu) in a marine phytoplankton species. Nano-Cu rapidly agglomerated in seawater and then decreased in size due to Cu dissolution. Dissolution rates declined during weeks 1-4 and remained low until 15 weeks, when the large agglomerates that had formed began to rapidly dissolve again. Marine phytoplankton species were exposed for 5-day periods to nano-Cu aged from 1 to 15 weeks at concentrations from 0.01 to 20 ppm. Toxicity to phytoplankton, measured as change in population growth rate, decreased significantly with particle aging from 0 to 4 weeks but increased substantially in the 15-week treatment due apparently to elevated Cu dissolution of reagglomerated particles. Results indicate that the transformation, fate, and toxicity of nano-Cu in marine ecosystems are influenced by a highly dynamic physicochemical aging process.


Subject(s)
Metal Nanoparticles , Nanoparticles , Phytoplankton/physiology , Copper/toxicity , Ecosystem , Nanoparticles/toxicity
12.
Sci Total Environ ; 867: 161209, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36581264

ABSTRACT

Global changes, including climate and land use changes, can result in significant impact to water resources. Planning for these changes requires making projections, even in the face of considerable uncertainties, to make informed management and policy decisions. A number of climate change scenarios and projections at global and regional levels are available that can be used to predict the likely range of outcomes. However, there is a need to translate these projections into potential implications for hydrology and water quality. Since there are dozens of hydrologic models, there is a need to evaluate them critically and to develop guidance regarding selecting the appropriate model for a given objective. We conducted a review of 21 different models commonly used for modeling hydrology (8), water quality (6) or both (7) at the watershed scale. Six of the models are strictly water quality models that depend on a separate model or observed data for hydrology. Seven additional models are useful for estimating hydrology and water quality simultaneously. The models were then evaluated based on ten different criteria, including functionality, scope, ability to model extreme events, data requirements, availability, and technical support, among others. The models were ranked Low, Medium or High in each of the criteria. The results indicate that three hydrologic models, MIKE-SHE, HEC-HMS, and MODHMS, as well as two full hydrology and water quality models, SWAT and WARMF, stand out in terms of functionality, availability, applicability to a wide range of watersheds and scales, ease of implementation, and availability of support. Modelers should carefully select the best model for their application, in part guided by the criteria discussed herein.

13.
Environ Sci Nano ; 9(8): 2922-2938, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36093215

ABSTRACT

Nano-sized titanium dioxide (nTiO2) is one of the most commonly used materials, however the knowledge about the molecular basis for metabolic and physiological changes in phytoplankton is yet to be explored. In the present study we use a combination of targeted metabolomics, transcriptomics and physiological response studies to decipher the metabolic perturbation in green alga Chlamydomonas reinhardtii exposed for 72 h to increasing concentrations (2, 20, 100 and 200 mg L-1) of nTiO2 with primary sizes of 5, 15 and 20 nm. Results show that the exposure to all three nTiO2 materials induced perturbation of the metabolism of amino acids, nucleotides, fatty acids, tricarboxylic acids, antioxidants but not in the photosynthesis. The alterations of the most responsive metabolites were concentration and primary size-dependent despite the significant formation of micrometer-size aggregates and their sedimentation. The metabolic perturbations corroborate the observed physiological responses and transcriptomic results and confirmed the importance of oxidative stress as a major toxicity mechanism for nTiO2. Transcriptomics revealed also an important influence of nTiO2 treatments on the transport, adenosine triphosphate binding cassette transporters, and metal transporters, suggesting a perturbation in a global nutrition of the microalgal cell, which was most pronounced for exposure to 5 nm nTiO2. The present study provides for the first-time evidence for the main metabolic perturbations in green alga C. reinhardtii exposed to nTiO2 and helps to improve biological understanding of the molecular basis of these perturbations.

14.
Sci Total Environ ; 839: 156265, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35643132

ABSTRACT

Biochar is recognized as an efficient amendment and soil improver. However, environmental and quality assessments are needed to ensure the sustainability of its use in agriculture. This work considers the biochar's chemical-physical characterization and its potential phyto- and geno-toxicity, assessed with germination and Ames tests, obtaining valuable information for a safe field application. Three biochar types, obtained from gasification at different temperatures of green biomasses from the Tuscan-Emilian Apennines (in Italy), were compared through a broad chemical, physical and biological evaluation. The results obtained showed the relevance of temperature in determining the chemical and morphological properties of biochar, which was shown with several analytical techniques such as the elemental composition, water holding capacity, ash content, but also with FTIR and X-ray spectroscopies. These techniques showed the presence of different relevant surface aliphatic and aromatic groups. The procedures for evaluating the potential toxicity using seeds germination and Ames genotoxicity assay highlights that biochar does not cause detrimental effects when it enters in contact with soil, micro- and macro-organisms, and plants. The genotoxicity test provided a new highlight in evaluating biochar environmental safety.


Subject(s)
Charcoal , Wood , Biomass , Charcoal/chemistry , Soil/chemistry , Wood/chemistry
15.
Ambio ; 51(3): 598-610, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34427865

ABSTRACT

Species Sensitivity Distribution (SSD) is a key metric for understanding the potential ecotoxicological impacts of chemicals. However, SSDs have been developed to estimate for only handful of chemicals due to the scarcity of experimental toxicity data. Here we present a novel approach to expand the chemical coverage of SSDs using Artificial Neural Network (ANN). We collected over 2000 experimental toxicity data in Lethal Concentration 50 (LC50) for 8 aquatic species and trained an ANN model for each of the 8 aquatic species based on molecular structure. The R2 values of resulting ANN models range from 0.54 to 0.75 (median R2 = 0.69). We applied the predicted LC50 values to fit SSD curves using bootstrapping method, generating SSDs for 8424 chemicals in the ToX21 database. The dataset is expected to serve as a screening-level reference SSD database for understanding potential ecotoxicological impacts of chemicals.


Subject(s)
Artificial Intelligence , Water Pollutants, Chemical , Databases, Factual , Ecotoxicology , Risk Assessment , Water Pollutants, Chemical/toxicity
16.
Nat Food ; 3(10): 829-836, 2022 10.
Article in English | MEDLINE | ID: mdl-37117882

ABSTRACT

Nanobiotechnology approaches to engineering crops with enhanced stress tolerance may be a safe and sustainable strategy to increase crop yield. Under stress conditions, cellular redox homeostasis is disturbed, resulting in the over-accumulation of reactive oxygen species (ROS) that damage biomolecules (lipids, proteins and DNA) and inhibit crop growth and yield. Delivering ROS-scavenging nanomaterials to plants has been shown to alleviate abiotic stress. Here we review the current state of knowledge of using ROS-scavenging nanomaterials to enhance plant stress tolerance. When present below a threshold level, ROS can mediate redox signalling and defence pathways that foster plant acclimatization against stress. We find that ROS-triggering nanomaterials, such as nanoparticulate silver and copper oxide, have the potential to be judiciously applied to crop species to stimulate the defence system, prime stress responses and subsequently increase the stress resistance of crops.

17.
Nat Food ; 3(12): 1020-1030, 2022 12.
Article in English | MEDLINE | ID: mdl-37118298

ABSTRACT

Nanotechnology-based approaches have demonstrated encouraging results for sustainable agriculture production, particularly in the field of fertilizers and pesticide innovation. It is essential to evaluate the economic and environmental benefits of these nanoformulations. Here we estimate the potential revenue gain/loss associated with nanofertilizer and/or nanopesticide use, calculate the greenhouse gas emissions change from the use of nanofertilizer and identify feasible applications and critical issues. The cost-benefit analysis demonstrates that, while current nanoformulations show promise in increasing the net revenue from crops and lowering the environmental impact, further improving the efficiency of nanoformulations is necessary for their widescale adoption. Innovating nanoformulation for targeted delivery, lowering the greenhouse gas emissions associated with nanomaterials and minimizing the content of nanomaterials in the derived nanofertilizers or pesticides can substantially improve both economic and environmental benefits.

18.
Nanomaterials (Basel) ; 11(11)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34835836

ABSTRACT

Surfactants are commonly used in foliar applications to enhance interactions of active ingredients with plant leaves. We employed metabolomics to understand the effects of TritonTM X-100 surfactant (SA) and nanomaterials (NMs) on wheat (Triticum aestivum) at the molecular level. Leaves of three-week-old wheat seedlings were exposed to deionized water (DI), surfactant solution (SA), NMs-surfactant suspensions (Cu(OH)2 NMs and MoO3 NMs), and ionic-surfactant solutions (Cu IONs and Mo IONs). Wheat leaves and roots were evaluated via physiological, nutrient distribution, and targeted metabolomics analyses. SA had no impact on plant physiological parameters, however, 30+ dysregulated metabolites and 15+ perturbed metabolomic pathways were identified in wheat leaves and roots. Cu(OH)2 NMs resulted in an accumulation of 649.8 µg/g Cu in leaves; even with minimal Cu translocation, levels of 27 metabolites were significantly changed in roots. Due to the low dissolution of Cu(OH)2 NMs in SA, the low concentration of Cu IONs induced minimal plant response. In contrast, given the substantial dissolution of MoO3 NMs (35.8%), the corresponding high levels of Mo IONs resulted in significant metabolite reprogramming (30+ metabolites dysregulated). Aspartic acid, proline, chlorogenic acid, adenosine, ascorbic acid, phenylalanine, and lysine were significantly upregulated for MoO3 NMs, yet downregulated under Mo IONs condition. Surprisingly, Cu(OH)2 NMs stimulated wheat plant tissues more than MoO3 NMs. The glyoxylate/dicarboxylate metabolism (in leaves) and valine/leucine/isoleucine biosynthesis (in roots) uniquely responded to Cu(OH)2 NMs. Findings from this study provide novel insights on the use of surfactants to enhance the foliar application of nanoagrochemicals.

19.
ACS Nano ; 15(10): 16344-16356, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34569785

ABSTRACT

Fully understanding the environmental implications of engineered nanomaterials is crucial for their safe and sustainable use. Cyanobacteria, as the pioneers of the planet earth, play important roles in global carbon and nitrogen cycling. Here, we evaluated the biological effects of molybdenum disulfide (MoS2) nanosheets on a N2-fixation cyanobacteria (Nostoc sphaeroides) by monitoring growth and metabolome changes. MoS2 nanosheets did not exert overt toxicity to Nostoc at the tested doses (0.1 and 1 mg/L). On the contrary, the intrinsic enzyme-like activities and semiconducting properties of MoS2 nanosheets promoted the metabolic processes of Nostoc, including enhancing CO2-fixation-related Calvin cycle metabolic pathway. Meanwhile, MoS2 boosted the production of a range of biochemicals, including sugars, fatty acids, amino acids, and other valuable end products. The altered carbon metabolism subsequently drove proportional changes in nitrogen metabolism in Nostoc. These intracellular metabolic changes could potentially alter global C and N cycles. The findings of this study shed light on the nature and underlying mechanisms of bio-nanoparticle interactions, and offer the prospect of utilization bio-nanomaterials for efficient CO2 sequestration and sustainable biochemical production.


Subject(s)
Molybdenum , Nostoc , Carbon , Nitrogen
20.
Environ Sci Technol ; 55(20): 13477-13489, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34240865

ABSTRACT

Mechanistic understanding of the interaction of copper-based nanomaterials with crops is crucial for exploring their application in precision agriculture and their implications on plant health. We investigated the biological response of soybean (Glycine max) plants to the foliar application of copper hydroxide nanowires (CNWs) at realistic exposure concentrations. A commercial copper based-fungicide (Kocide), dissolved copper ions, and untreated controls were used for comparison to identify unique features at physiological, cellular, and molecular levels. After 32 d of exposure to CNW (0.36, 1.8, and 9 mg CNW/plant), the newly developed tissues accumulated significantly high levels of Cu (18-60 µg/g) compared to Kocide (10 µg/g); however, the rate of Cu translocation from the site of CNW treatment to other tissues was slower compared to other Cu treatments. Like Kocide, CNW exposure at medium and high doses altered Co, Mn, Zn, and Fe accumulation in the tissues and enhanced photosynthetic activities. The proteomic and metabolomic analyses of leaves from CNW-treated soybean plants suggest a dose-dependent response, resulting in the activation of major biological processes, including photosynthesis, energy production, fatty acid metabolism, lignin biosynthesis, and carbohydrate metabolism. In contrast to CNW treatments, Kocide exposure resulted in increased oxidative stress response and amino acid metabolism activation.


Subject(s)
Copper , Nanowires , Copper/toxicity , Fertilizers , Hydroxides , Proteomics , Glycine max
SELECTION OF CITATIONS
SEARCH DETAIL
...