Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 225(9)2022 05 01.
Article in English | MEDLINE | ID: mdl-35417009

ABSTRACT

Closely related species are expected to diverge in foraging strategy, reflecting the evolutionary drive to optimize foraging performance. The most speciose cetacean genus, Mesoplodon, comprises beaked whales with little diversity in external morphology or diet, and overlapping distributions. Moreover, the few studied species of beaked whales (Ziphiidae) show very similar foraging styles with slow, energy-conserving movement during long, deep foraging dives. This raises the question of what factors drive their speciation. Using data from animal-attached tags and aerial imagery, we tested the hypothesis that two similar-sized mesoplodonts, Sowerby's (Mesoplodon bidens) and Blainville's (Mesoplodon densirostris) beaked whales, exploit a similar low-energy niche. We show that, compared with the low-energy strategist Blainville's beaked whale, Sowerby's beaked whale lives in the fast lane. While targeting a similar mesopelagic/bathypelagic foraging zone, they consistently swim and hunt faster, perform shorter deep dives, and echolocate at a faster rate with higher frequency clicks. Further, extensive near-surface travel between deep dives challenges the interpretation of beaked whale shallow inter-foraging dives as a management strategy for decompression sickness. The distinctively higher frequency echolocation clicks do not hold apparent foraging benefits. Instead, we argue that a high-speed foraging style influences dive duration and echolocation behaviour, enabling access to a distinct prey population. Our results demonstrate that beaked whales exploit a broader diversity of deep-sea foraging and energetic niches than hitherto suspected. The marked deviation of Sowerby's beaked whales from the typical ziphiid foraging strategy has potential implications for their response to anthropogenic sounds, which appears to be strongly behaviourally driven in other ziphiids.


Subject(s)
Echolocation , Whales , Acoustics , Animals , Echolocation/physiology , Movement , Swimming , Whales/physiology
2.
R Soc Open Sci ; 8(12): 202320, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34966548

ABSTRACT

Foraging decisions of deep-diving cetaceans can provide fundamental insight into food web dynamics of the deep pelagic ocean. Cetacean optimal foraging entails a tight balance between oxygen-conserving dive strategies and access to deep-dwelling prey of sufficient energetic reward. Risso's dolphins (Grampus griseus) displayed a thus far unknown dive strategy, which we termed the spin dive. Dives started with intense stroking and right-sided lateral rotation. This remarkable behaviour resulted in a rapid descent. By tracking the fine-scale foraging behaviour of seven tagged individuals, matched with prey layer recordings, we tested the hypothesis that spin dives are foraging dives targeting deep-dwelling prey. Hunting depth traced the diel movement of the deep scattering layer, a dense aggregation of prey, that resides deep during the day and near-surface at night. Individuals shifted their foraging strategy from deep spin dives to shallow non-spin dives around dusk. Spin dives were significantly faster, steeper and deeper than non-spin dives, effectively minimizing transit time to bountiful mesopelagic prey, and were focused on periods when the migratory prey might be easier to catch. Hence, whereas Risso's dolphins were mostly shallow, nocturnal foragers, their spin dives enabled extended and rewarding diurnal foraging on deep-dwelling prey.

3.
J Exp Biol ; 223(Pt 3)2020 02 03.
Article in English | MEDLINE | ID: mdl-31822550

ABSTRACT

Toothed whales have evolved flexible biosonar systems to find, track and capture prey in diverse habitats. Delphinids, phocoenids and iniids adjust inter-click intervals and source levels gradually while approaching prey. In contrast, deep-diving beaked and sperm whales maintain relatively constant inter-click intervals and apparent output levels during the approach followed by a rapid transition into the foraging buzz, presumably to maintain a long-range acoustic scene in a multi-target environment. However, it remains unknown whether this rapid biosonar adjustment strategy is shared by delphinids foraging in deep waters. To test this, we investigated biosonar adjustments of a deep-diving delphinid, the Risso's dolphin (Grampus griseus). We analyzed inter-click interval and apparent output level adjustments recorded from sound recording tags to quantify in situ sensory adjustment during prey capture attempts. Risso's dolphins did not follow typical (20logR) biosonar adjustment patterns seen in shallow-water species, but instead maintained stable repetition rates and output levels up to the foraging buzz. Our results suggest that maintaining a long-range acoustic scene to exploit complex, multi-target prey layers is a common strategy amongst deep-diving toothed whales. Risso's dolphins transitioned rapidly into the foraging buzz just like beaked whales during most foraging attempts, but employed a more gradual biosonar adjustment in a subset (19%) of prey approaches. These were characterized by higher speeds and minimum specific acceleration, indicating higher prey capture efforts associated with evasive prey. Thus, tracking and capturing evasive prey using biosonar may require a more gradual switch between multi-target echolocation and single-target tracking.


Subject(s)
Dolphins/physiology , Echolocation , Predatory Behavior , Acoustics , Animals , Atlantic Ocean , Diving , Portugal , Sound Spectrography
SELECTION OF CITATIONS
SEARCH DETAIL