Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(29): 26421-26432, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31148453

ABSTRACT

We developed and presented highly sensitive solvent-free silver nanoparticle strain sensors fabricated using the aerodynamically focused nanoparticle (AFN) printer. The nanoparticles were printed in various conductive patterns. We explored how printer scan velocity affected pattern geometry and sensor sensitivity. The strain sensors were highly sensitive; the scan velocity afforded tunable sensitivity; and an analytical model predicted the behavior well under low-strain (<0.4%) conditions. We describe a prototype sensor that reliably measured composite beam tensile strain. We further enhanced the sensitivity by creating mechanical cracks, facilitating small dynamic signal measurements. The linear sensitivity of the sensor could be tuned from 18.60 to 290.62 by varying the scan velocity from 2 to 40 µm/s. The cracked sensor afforded the greatest sensitivity (1056) and captured small vibrations from a stringed instrument. We report highly sensitive and reliable measurements of dynamic behavior with simple tunability.

SELECTION OF CITATIONS
SEARCH DETAIL
...