Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34329890

ABSTRACT

In this study we evaluate column hardware exhibiting a novel hybrid silica surface in its ability to mitigate metal-induced adsorption artifacts such as chromatographic peak tailing for acidic amino acid residue containing peptides. Using a conventional reversed-phase liquid chromatography (RPLC)-based method, chromatographic performance of a peptide map was compared using a traditional stainless-steel column and an equivalent column bearing a novel hybrid silica surface. Tailing factors for six peptides containing acidic amino acid residues (Tf ≥ 1.50) were observed to be reduced up to 80% to a nominal value Tf ≤ 1.2 with R.S.D. % ≤ 4%. Furthermore, recovery for two of the identified peptides exhibited increased recovery in addition to reduced peak tailing when using the column bearing the hybrid silica surface. Performance was unaffected for peaks where there were no implications of metal induced effects. Collectively, this study demonstrates that the novel hybrid silica surface can effectively reduce peak tailing for acidic residue containing peptides.


Subject(s)
Chromatography, Reverse-Phase/methods , Peptides , Silicon Dioxide/chemistry , Stainless Steel/chemistry , Adsorption , Antibodies, Monoclonal , Hydrogen-Ion Concentration , Peptides/analysis , Peptides/chemistry , Surface Properties
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1126-1127: 121773, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31470201

ABSTRACT

Metal-ion mediated adsorption in liquid chromatography has been identified as a contributing factor in poor peak shape, tailing, and diminished recovery of compounds prone to cation exchange-like interaction with metal-based activity sites. Peptides that exhibit negative charge-bearing amino acids such as aspartic acid and glutamic acid are particularly sensitive to metal-ion mediated adsorption in RPLC/MS-based separations when using weak acids (e.g. formic acid) as mobile phase additives. Citric acid and medronic acid as metal complexing mobile phase additives were evaluated for their ability to mitigate metal-ion mediated adsorption in RPLC/MS-based peptide mapping assays. In this study, chromatographic performance was stabilized with peak tailing for peptides of interest reduced by as much as 40% in the presence of a chelator at a mobile phase concentration of 1 ppm. Performance gains were observed to be stable over a 67-hour time study with an average USP tailing factor of 1.00, % RSD = 0.64. The stabilizing effect of the chelator improved peptide mapping assay robustness with relative peak areas for target impurities calculated at 2.28% (% R.S.D. = 2.36) and 2.40% (% R.S.D. = 2.37). Collectively this study demonstrates that chelators as mobile phase additives offers a means to improve chromatographic performance for biomolecules sensitive to metal-ion mediated adsorption under formic acid-based RPLC conditions.


Subject(s)
Chromatography, Reverse-Phase/methods , Metals , Peptides , Adsorption , Chelating Agents/chemistry , Citric Acid/chemistry , Mass Spectrometry , Metals/chemistry , Metals/isolation & purification , Peptides/analysis , Peptides/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL