Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Dev Cell ; 59(7): 827-829, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38593785

ABSTRACT

The viscous glycocalyx of mammalian cells, composed of glucosaminoglycans, glycolipids, and glycoproteins, "sugar coat" the outer plasma membrane. In this issue of Developmental Cell, Le et al. (2024) show that the glycocalyx is removed from apoptotic blebs via disassembly of the cortical cytoskeleton, exposing the "eat-me" signals necessary for efferocytosis.


Subject(s)
Glycocalyx , Animals , Apoptosis , Cell Membrane , Glycoproteins , Mammals , Phagocytosis
2.
EMBO Rep ; 22(6): e52564, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34041845

ABSTRACT

Timely removal of dying or pathogenic cells by phagocytes is essential to maintaining host homeostasis. Phagocytes execute the clearance process with high fidelity while sparing healthy neighboring cells, and this process is at least partially regulated by the balance of "eat-me" and "don't-eat-me" signals expressed on the surface of host cells. Upon contact, eat-me signals activate "pro-phagocytic" receptors expressed on the phagocyte membrane and signal to promote phagocytosis. Conversely, don't-eat-me signals engage "anti-phagocytic" receptors to suppress phagocytosis. We review the current knowledge of don't-eat-me signaling in normal physiology and disease contexts where aberrant don't-eat-me signaling contributes to pathology.


Subject(s)
Biological Phenomena , Phagocytosis , Apoptosis , Phagocytes , Signal Transduction
3.
Clin Cancer Res ; 26(10): 2297-2307, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31969338

ABSTRACT

PURPOSE: Treatment failure from drug resistance is the primary reason for relapse in acute lymphoblastic leukemia (ALL). Improving outcomes by targeting mechanisms of drug resistance is a potential solution. PATIENTS AND METHODS: We report results investigating the epigenetic modulators decitabine and vorinostat with vincristine, dexamethasone, mitoxantrone, and PEG-asparaginase for pediatric patients with relapsed or refractory B-cell ALL (B-ALL). Twenty-three patients, median age 12 years (range, 1-21) were treated in this trial. RESULTS: The most common grade 3-4 toxicities included hypokalemia (65%), anemia (78%), febrile neutropenia (57%), hypophosphatemia (43%), leukopenia (61%), hyperbilirubinemia (39%), thrombocytopenia (87%), neutropenia (91%), and hypocalcemia (39%). Three subjects experienced dose-limiting toxicities, which included cholestasis, steatosis, and hyperbilirubinemia (n = 1); seizure, somnolence, and delirium (n = 1); and pneumonitis, hypoxia, and hyperbilirubinemia (n = 1). Infectious complications were common with 17 of 23 (74%) subjects experiencing grade ≥3 infections including invasive fungal infections in 35% (8/23). Nine subjects (39%) achieved a complete response (CR + CR without platelet recovery + CR without neutrophil recovery) and five had stable disease (22%). Nine (39%) subjects were not evaluable for response, primarily due to treatment-related toxicities. Correlative pharmacodynamics demonstrated potent in vivo modulation of epigenetic marks, and modulation of biologic pathways associated with functional antileukemic effects. CONCLUSIONS: Despite encouraging response rates and pharmacodynamics, the combination of decitabine and vorinostat on this intensive chemotherapy backbone was determined not feasible in B-ALL due to the high incidence of significant infectious toxicities. This study is registered at http://www.clinicaltrials.gov as NCT01483690.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Adolescent , Adult , Asparaginase/administration & dosage , Bortezomib/administration & dosage , Child , Child, Preschool , Decitabine/administration & dosage , Dexamethasone/administration & dosage , Doxorubicin/administration & dosage , Female , Follow-Up Studies , Humans , Infant , Male , Mitoxantrone/administration & dosage , Neoplasm Recurrence, Local/pathology , Pilot Projects , Polyethylene Glycols/administration & dosage , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis , Salvage Therapy/methods , Survival Rate , Vincristine/administration & dosage , Vorinostat/administration & dosage , Young Adult
4.
PLoS One ; 7(12): e50895, 2012.
Article in English | MEDLINE | ID: mdl-23236401

ABSTRACT

MicroRNAs (miRs) play major roles in normal hematopoietic differentiation and hematopoietic malignancies. In this work, we report that miR-27a, and its coordinately expressed cluster (miR-23a∼miR-27a∼miR-24-2), was down-regulated in acute leukemia cell lines and primary samples compared to hematopoietic stem-progenitor cells (HSPCs). Decreased miR-23a cluster expression in some acute leukemia cell lines was mediated by c-MYC. Replacement of miR-27a in acute leukemia cell lines inhibited cell growth due, at least in part, to increased cellular apoptosis. We identified a member of the anti-apoptotic 14-3-3 family of proteins, which support cell survival by interacting with and negatively regulating pro-apoptotic proteins such as Bax and Bad, as a target of miR-27a. Specifically, miR-27a regulated 14-3-3θ at both the mRNA and protein levels. These data indicate that miR-27a contributes a tumor suppressor-like activity in acute leukemia cells via regulation of apoptosis, and that miR-27a and 14-3-3θ may be potential therapeutic targets.


Subject(s)
14-3-3 Proteins/genetics , Leukemia/genetics , MicroRNAs/genetics , Tumor Suppressor Proteins/genetics , 14-3-3 Proteins/metabolism , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Leukemia/metabolism , MicroRNAs/metabolism , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...